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The Homogeneous Universe



Chapter 1

Introduction

1.1

VEarth

~ 50. 1.1

VMoon ( )
Thus, if the Earth were scaled to the size of a basketball, the Moon would correspond
roughly to a tennis ball.

"Moon-Earth
~Moon-Barth -, 6. (1.2)
TEarth

The Earth—-Moon distance would be comparable to the distance from the three-point line
to the basket.

2. Taking a peppercorn of diameter dpeppercorn ~ © mm to represent Earth, the scaled
Sun—Earth distance (1 AU) becomes

d

eppercorn 5 mm
Tscaled Sun-Earth — pdpp N X T'Sun-Earth ™ 12742.018 km x 1 AU = : (13)
Eart .

The average orbital radius of Neptune is Dgy, Neptune & 30.1 AU, which under the same
scaling becomes

d eppercorn 5 mm
Tscaled Sun-Neptune — % X T'Sun-Neptune ™ m x30.2 AU ~ | 1800 m|. (14)

3. We take the average orbital radius of Neptune as a proxy for the Solar System’s radius.ﬂ
For reference, a standard international basketball court measures 28 m x 15 m. Under
this scaling, the Solar System would shrink to

dSolar System 60.4 AU

~ ~ —4
dscaled Solar System — d X lbasketball court ™ 65 1 x 28 m~|4.1x10 mij.
Solar Neighborhood y
(1.5)

'T his, of course, strongly underestimates the size of the Solar System, and its boundary is not even well
defined. Depending on whether one considers the Oort Cloud, heliopause, heliosphere, or Kuiper Belt, the result
would vary significantly.
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Introduction

4.
o dSolar Neighborhood ~ 65 1ys ~
dscaled Solar Neighborhood — X lbasketball court ™~ T 5 . X 28 m~[0.018 m].
dtilky Way 10° lys
(1.6)
D. s
iy W 10° 1ys
dscaled Milky Way — — = X lbasketball court ~> AT 1 X 28 m ~ : (17)
dLocal Group 10 lys
6.
A oeal G 107 lys
dscaled Local Group — X lbasketball court ~ T A8 71 X28 m ~ : (18)
dLocal Supercluster 5 x 10 lyS
7.
dLocal Supercluster 5 X 108 lys

dscaled Local Supercluster — d
observable universe

X lbasketball court ~

2 x 46.5 x 107 lys

28 m ~[0.15 m].

(1.9)
1.2
1.

ty = H'=70"" km™' s Mpc ~[4.4 x 10~ 1.10

Hy = 0o = pc~= 4 X Sl. ( . )
2.

dy, = cHy ' = ctpy, ~|1.3 x 10%° m]. (1.11)

Because the universe is expanding, this is not the physical radius of the ob-
servable universe, but only about one-third of it.

3.
Po = % ~19.2x107*" kgm . (1.12)
This is roughly times smaller than that of water, p, ~ 1.0 x 10° kg m™>.
* Muniverse _ £0Vuniverse 4 5 1 80
N universe = oy = My ~ PongHom_H ~ . (1.13)

The molar mass of hydrogen is 1 g/mol, and that of oxygen is 16 g/mol. Thus, the

2x1 g/mol 1

hydrogen mass fraction in water is 4 /mol ax1 g/mol — 9- Taking the average adult brain

mass Mmy.in =~ 1.4 kg and assuming it consists mostly of water,

1
o Mpyrain X 9 ~ 1026

NH,brain - ; (114)
my

which is only of the total hydrogen atoms in the universe.

3



Chapter 1. Introduction

h
bin = 7 € ~120x107 Y m|, (1.15)

max

This scale is about times smaller than the Hubble distance dg, .




Chapter 2

The Expanding Universe

Exercise 2.1

The Euler-Lagrange equation tells us

i (ony o o
dt \ 9¢ dq
where q is a generalized coordinate. Applying to the Lagrangian of the free particle
L="2 <f2 + r2¢>2> , (2.2)
gives us
d oLy _or
dt \or )  or (2.3)
7= rg52,
and
d oLy _or
dt \op) 09
d .
g (mrd) =0 24)
. 2 .
O =—=10.
r
Exercise 2.2
From the FRW metric,
ds* = —2dt? + a*(t)y;;da'da’. (2.5)
Since goo = —c is a constant and g;; = g5, = 0, any Christoffel symbols with at least two time

. 4. . . 0
indices vanish, i.e. I'jy = I'gs = 0.
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Y = ; 9" (0,955 + 03917 — Orgsj)
= 26% (D50 + 83010 — Bogiy)
=009

0 (a*) v

-1
a% 7"

29
1
"2
1
2
=cC

1
6; /\ (809;')\ + 0;90x — a)\ng)
9" (9og;e)

—2 z‘kzao (a2) 'ij

_ 716151

27
1
29
1
2

where we have used the fact that the metric is symmetric such that -;;

i L

ik = Eg A (ajgk,\ + akgj/\ - 8/\gjk)
L

= §gl (@gkl + akgjl - algjk)

1
= §7l (aﬂkl + it — aﬁjk) .

Exercise 2.3
Starting from Eq. (2.55) of the textbook,
9 PP = —m2
gOOPOPO + gijPin — —m?c?
—<P0)2 + p2 — —m2C2.
Taking time derivative on both sides:

drP’  dp
_pi=_ B
a TP

Now, using the geodesic equation for P° (Eq. (2.52) of the textbook), we shall get

R AP’ EdE o
_p I N - -
N a  Zar M @

= YVji-

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)
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or d .
e (2.12)
pdt a
Thus, p x a™ .
To derive Eq. (2.56) of the textbook, we notice that from the metric,
Adr? = Adt? — gi;da'da’, (2.13)
or ) )
dr v
— ] =1—-—. 2.14
( dt) a (2.14)
Then, since
o da' da’ dt\? dz’ da’ o\
2 i 2 2 2 2
= g.P'Pl =g mi — — - = 1—— 2.15
p gm gzym dT dT gzym <d7’) dt dt mv ( C2> ) ( )
we have o
P — (2.16)
\/1 -0/
Exercise 2.4
From U = (pc®)V, we know that
—PAV = dU = dpc®V + pdV (2.17)
Dividing both sides by dt, . .
—PV = pc’V + pcV, (2.18)
or :
1% P
p+— (p—l——2> =0. (2.19)
V c
On the other hand, we know that since V o a?,
vV oo1d@®) La
A = 3= 2.20
V¢ dt a ( )
Plugging this back into Eq. (2.19)), we arrive at
' P
p+ 3= (,0 + —2) ~0. (2.21)
a C

Exercise 2.5

3

. .. . 3 . e 4 4
e First noticing that since p,,a” = %peqaeq is a constant, and similarly p,a” = %peqa

eq’
can infer that nowadays (a = 1) we have Q,,a.q = 2,50 ' = Q,, where we have defined

Yo =y(z=0) = 1+ 2q = ae—ql'

we
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Starting from the Eq. (2.194) of the textbook with Q4 = €, = 0, using y = LZ =2 =
yoa or da = y; "dy, we have
. 1 /a da’
Hy Jo /Q,d72+Q,,d "
1 /y y'dy/
Hy Jo yg/QO V1+y (2.22)
o i
1 4 2 3/2 1/2]
= |+ ()P =201+ ).
Hoyd* VO, {3 300 )

Plugging the observed values H, = 67.74 kms 'Mpc ', yo = 1 + Zeq = 3401, and
Q,, = 0.3153, we can calculate the prefactor to be ~ 130000 yrs, and thus

4 2
t = 130000 yrs {5 +30+ ¥ — 201 + y)lﬂ} : (2.23)

— At z = 2, y = 1, and thus, the matter-radiation equality happens at ¢t ~ 50000 yrs.

_ _ _ 3401 o N
— At 2 = 2, = 1100, y = 7757, and thus, the recombination happens at ¢ ~ 360000
VTS.

e Similarly, setting instead Q, = Q, =0, Q,, = a>,,Q = yo “Q, and starting from the Eq.
(2.194) of the textbook again, we get

t_i/“ da’
Hy Jo \/Q,,d " + Qua”
/ /
[Py (2.24)
Hov/S0 Jo /1447
2
W32,
BET A

Plugging the observed values Hy = 67.74 kms ' Mpc™!, yo = 1 + 2,4 = 1.3, and Q, =
0.6847 give us the prefactor to be ~ 11.5 Gyrs. Thus, we have

t =115 Gyrs x sinh*(y*/?). (2.25)

— At 2z = z,,p, y = 1, and thus, the matter-dark energy equality happens at t ~ 10.1
Gyrs.

— At z=2=0,y =142,, = 1.3, and thus, the age of the universe is about t ~ 13.6
Gyrs.

2.1 Robertson-Walker metric

1. [ ] Why gOO = _1?
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Homogeneity implies that gy, can only be a function of time with no space depen-
dence. Now suppose one has a non-trivial gy,, one can always do a redefinition of
the time coordinate dt’ = \/—ggodt to absorb the non-trivial gy, so one can always
rescale to set goo = —1.

Isotropy requires the mean values of any three-vectors to vanish in the comoving
frame for there is no preferred direction, and thus one must have gy = 0.

Why g,; = a2(t)’7ij(£)?

Isotropy around a point x = 0 constrains the mean values of any three-tensor to be
proportional to d;;. Homogeneity requires the proportionality coefficient to be only
a function of time. Also, as the proportionality is unaffected by transformation of
the spatial coordinates, one can always separate the g;; into a time-dependent part
and a spatial-dependent part. Since there is nothing special about the point x = 0
by homogeneity, the factorization must hold everywhere.

[sotropy implies a rotational invariance, under which the radial component r is
preserved under a rotation transformation. This implies g,, can only be a function of
radial coordinate alone: g,, = A(r). As it never runs to negative value by definition,
one can choose

Grr = A(r) = 2/ F0) (2.26)

for some function a(r/Ry). The Ry is just some arbitrary constant carrying the a
dimension of [length] to make the metric dimensionally consistent.
Also, there can never be non-vanishing mixing terms between the radial components
and angular components such as g,y and g,4. The rotational invariance also implies
grp and g,, can only be functions of radial component r only. However, if one does
a reflection redefinition on the angular angles (e.g., 6 — 7 — 0 or ¢ — —¢), which
leaves r unchanged, but drdf or drd¢ picks a sign change under such transformation,
and one concludes

Gro(r)drdd = —g,4(r)drdd = 0, (2.27)

and

Grg(r)drde = —g,4(r)drde = 0. (2.28)

Moreover, the rotational invariance also implies the angular coordinates mix in such
a way that the standard metric on the sphere dQ? = d#”+sin® 0d¢” is preserved with
a prefactor that can only be a function of radial component r only. More specifically,

9o0(r,0,0)A0” + 299, (r, 0, 9)d0AD + g4y (1,0, )de* = B(r)dQ>. (2.29)

Now, the rotational invariance also says the metric should not change under a linear
shift on the azimuthal angle ¢ — ¢+« for an arbitrary constant a. This immediately
implies ggg, goy, and gs, can not have any ¢ dependence. A reflection arguments
again implies the cross term should vanish:

Gos(r, 0)A0AG = —ggs(r, 0)dOAG = 0. (2.30)

Finally, for any fixed r, the angular part of the metric needs to be isomorphic to a
2-sphere with radius r. This fixes B(r) = r? or otherwise, one can not reproduce

9
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the correct physical circumference. Therefore, the most general spatial metric takes

the form
de* = 2R qr? 4 p2402, (2.31)

Notice that we're calculating a 3-scalar, which is invariant under any spacial transfor-
mations. Thus, we can choose the coordinate with 6 = 7, which shall significantly
simplify the calculation. Also, since the metric has no off-diagonal elements, any
Christoffel symbols that has the form Fék with i # j # k must vanish. In other
words, there must be at least two repeated indices. The non-vanishing Christoffel
symbols are

., = %g”(@grr) =d, (2.32)
b0 = 59 (~0000) = —re >, (23
op = %g”(—@,ngw) = —rsin®fe > = —re >, (2.34)

I, = 56" (Orom) = - (2.35)

Fzr = %gw(@rgw) = %m(% sin® ) = %, (2.36)

or are related to these by symmetry. There are also

Fie = %QW((%%@) = cot b, (2.37)
Fz,¢ = %g%(—aggw) = —sinf cos b, (2.38)
whose partial derivative w.r.t # does not vanish:
89F£9 = —csc?f = —1, (2.39)
GQFZQS = —cos’f +sin’0 = 1. (2.40)

Again, since the metric tensor is diagonal, to calculate the scalar curvature, the only
relevant Ricci tensors are R,,, Rgy, and Ry

Rrr = azrjﬂr - arrjﬂz + F;jrg'r - FZ ‘Fj

r)Tore

= a’!’F:T‘ - arrz:r - arrfe - arr\i)qs + (F:T>2 + FzTF;T + FZTFZT - (F:T)Q - (F79"9>2 - (
2 a2
= —=4+2— — —
T p?
_ o
r
(2.41)

Rgp = 0,9 — 0pT; + FEjFJée — éjréi
= 0,19 — 04T, + 7, Lo + T, Do + 5, Ty — 2T,
= 0. (re **) +1—rae ™ — 2% 427

-2 -2
=—e “+rae 41,

(2.42)

10

®
re,

)2
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and
Rys = 055 — 0T + Ty, — Ty T,
= 0,Ty + OpT g + T7, Ty + T, T4 + T, T — 215, T, (2.43)
= e frae™ 4 1.
Then,

Ry =g R, + gaeR% + 9¢¢R¢¢

2
= (QE) + S(—e 7 +ra'e ™ + 1)

r T
2 (2.44
== [’I“O_//G_2a o 6—2a + ra/€—2a + 1] )
r
2 d —2a(r/R
3. Requiring the scalar curvature to be a constant, say Ry = A
2 d
A=Ru = 2112 ( 72a<r/Ro>>
(3) T2 |: dr
d Ar?
~ (7“6 2a(r/R0)> 1 _T
dr A23 (2.45)
re 20/Ro) 4 B —p TT
2
2a/R) _q AT B
6 r
Recognizing % = R% and B = bR, shall give us
0
1
2o (/o) — . (2.46)

r? r -1
1k = b (%)
As b <RL0> is divergent at r = 0, the local flatness at this point requires b = 0 and hence,

a2
ds? = —dt® + d®(t ! +r2d0?| . 2.47
)

1—kr’/R}
The k = —1,0, 1 just corresponds to hyperbolic, flat, and spherical space, respectively. R,
simply tells the spatial curvature.

dp . a

a = ar = ap, (248)
0

a—i = aq, (2.49)
ar Loy 1y, i 5 @

T4z R T 2.50
5 + giar” + Satr toop wLE (2.50)
aoT

5 = aar = ap. (2.51)

11
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The Jacobian is given by

N

[
N
SIS
SIS
N———

Its determinant is given by

0T 0p 90T Op
det S = o ar ~ ar o

.. .2 .2

_ @2, 2 2\ _& 2

—(a+2p+2ap> ap
i a?

- a s A o

(a+2p 2ap>.

Inverting the Jacobian give us

We can then read off the elements:

ot 1 dp +a2 a® . d2+d22
OT  detJor 2P T 94" 24" 2a2p ’

ot 1 T i, @ 5\ . a I L

o == o= l\atgp =5t ) apm——p(l—p 507 ],
op det J Or 2 2a a 2a 24>

oT det J Ot 2 2a a a’ 2a 24>

or 1 oT i, a5\ i, a® .\ 1
Op detJ Ot (a+ 2~ 24" * 2" N 202" a i 2"

Thus,
2 a o 2 2 ? 2 az 2 a o a2 2 ? 2
dt*=(1- — — d7? + =p* (1 - — — d
( 2@ﬂ+22p> +a2p( 2p+2a2p> p
G i a2 )\’
2 (1= =p>+ —-p?) dpdT
ap( 5, +2a2p> p
i a’ a> a
~ (1 ——p*+ —2p2> dT? + —p*dp* — 2—pdpdT,
a a a a
and

, @, i 5 a® S\ .. 1 a2 5\,

. .. .92 .2
a a o a5 a4
—2—=p|1—— — 1+ — dpdT
agP( 5a” +2agp) ( +a2p) P
2

.2 . .
a 1 a a
~ —ptdT? + p (1 + 2?;?) dp? — 2;pdpdT

12

—~

(2.52)

(2.53)

(2.54)

(2.55)
(2.56)
(2.57)

2.58)

(2.59)

(2.60)
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and also,
a*dr? a’ 9
7,52 T
1—Fkr°/Ry 1—kp /(a"Ry)
2
~ a? (1 1 ke 2) dr? (2.61)
a RO

.2 2 .2 .

k
= LA + (1 + 2y 2“—2;)2) dp® — 22 pdpdT,
a a” Ry a a

where we have ignored terms in O(p3) and higher. Thus,
212

1—kr /RO

.9 2 -2
a k a

~ — (1 — —2p2) d7? + (1 + % + —2p2> dp2 + deQQ.
a a“Ry; a

ds® = —dt? +
(2.62)

To extract the Newtonian effective potential, we can match with the Newtonian weak
field metrics gog = —(1 + 2®) component, and read off

.2

1420 =12, (2.63)
a
or
1a® ,
O(p) = —5 20" (2.64)
a

Notice p really measures the physical distance and the effective potential captures the
tidal effect from the cosmic acceleration by a local observer.

2.2 Geodesics from a Lagrangian

1.
d (oL\ oL
dx \oz* ) ox"
I P
- a(guax ) = Y, T
e L v R
Gua" = 29,[“,70[1' X +gua,u‘r T (265)
1 e
Gna" = =5 (Gura = Gpaw = Guap) &0
.. 1 o . -V
lﬁ = —595 (guu,a ~ Ypay — gVO«N) at'E
xﬁ — _l“ﬁyi,ll«:tl/7

where we used the trick to replace g, , with % (gua,,, + gua,u) on the fourth line because
it is contracted with #"%" which is symmetric in x4 and v. This is exactly the geodesic
equation.

13
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2. Note that the Lagrangian by definition is a function of some coordinate and its first

derivative.
i _de A (oc
a  dx ax \air”

o Tart Tat T

_ 0L ., d [OL)
“ ot T \air )"

=0,

di’

oL oL ., oL, d(aﬁ).# oL .,

[ a——
ozt

(2.66)

where we invoked the Fuler-Lagrange equation in the last line. Thus, the Hamiltonian H

is a constant along the geodesics.

2.3 Christoffel symbols from a Lagrangian

The metric tensor is given by
G = dZ(lg(—]_, a’2(t)6ij)7
and thus,
_ v G2 2¢ il
L=—g,i"t" =t — a1’

Applying the Euler-Lagrange equation for time coordinate shall give us

d oLy ot
dy\ ot ) ot

dt

d*t i
Frchn —aad; ;o1
Comparing this with the geodesic equation of 0-th component:
d*t 0 .
o = Tl
one can read off
0 .
FU = aa5ij
and
Fgo = ng = F?o = 0.
A bit of caution of notation abuse here: @ = % while 2/ = %

Similarly, we can apply the Euler-Lagrange equation for k-th coordinate,

a(ocy_oc
d\ \oi*) 92"

d o0
a®0,,i" = —2aald;,i"
i = 225k
a

14

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)

(2.72)

(2.73)
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Comparing this with the geodesic equation of k-th component:

d?z” i
ST ~Th @i, (2.74)
one can read off _
Tk 1k — 2%k (2.75)
a
or )
rh =k = 25k (2.76)
a
Also,
Th =T} =0. (2.77)

This result should not come as much of a surprise since we used the Euler-Lagrange equation
to derive the geodesic equation in the first place. Of course, the two approaches should give
the same result.

2.4 Geodesics in de Sitter space

1. The Lagrangian is

2\ P2\ : ; N\ . P2\ :
L= (1 — —2) - (1 — —2) i —1?0° —r” sin® 0¢” = (1 — —2) £~ (1 — —2> i 1?02,
R R R R

(2.78)
where we used dQ* = d6* + sin® 0d¢* such that Q* = 6* + sin®0¢*. Now, since the
Lagrangian has no apparent dependencies on t and (), the two coordinates must have
associated conserved quantity.

For t coordinate, we call this conserved quantity total energy E. Using the Euler-Lagrange

equation EL
= (55) o
dr \ ot

(- 2)

2

E = (1 — ;;2) i (2.79)

For the solid angle €2 coordinate, we call this conserved quantity total angular momentum

L:
(%) -0
dr \ 99
L =1°Q
L? = r'0% = r*(6? + sin® 09?). (2.80)

'The reason of using V'E instead of E to be the LHS is because we want the Lagrangian and the energy to
have same dimensions (though they are both dimensionless in this question due to the Lagrangian in the book
is written in a way that the mass of the particle has been set to unity.)

15
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2. Rewriting the Lagrangian with the conserved quantities £ and L:

L= (1 — ;—22>_1 (E —7?) — L—j (2.81)

The problem also told us that for a massive particle,

gpy$H$V =-—1 (282)
and thus,
L=1
2\ 1 2
r .2 L
(S PR
2 2
r R
Thus, the radial motion is governed by the effective potential
L2 e 12 2 2
Veﬁ(r):(up)(1—E):1—F+T—2—F. (2.84)

The sketch of this potential is shown in Fig. [2.1]

Effective Potential V(r)
V(r)
25+
— L=0

o0l L=05R
15+
10+

5 .

- S ! ' r
0.2 0.4 0. 8 1.0

Fig. 2.1: The effective potential for L =0 and L = 0.5R

16



Chapter 2. The Expanding Universe

3. From Eq. (2.83),

dr r?
E:\/E—Veff(r):\/E—lJr?, (2.85)

where we set L = 0 since the particle has only radial velocity. Thus,

/T dr’
/2:7—
o JE-1+1

Rsinh™" <R\/%> -
r = RVE — 1sinh (}%) . (2.86)

The At is apparently finite when Ar = R.

To find the trajectory r(t), we notice that

& _s(1-T (2.87)
dr R) '
Thus,
dr drdr 1 r r?
—_— = =—(1- = EF-14+—. 2.88
dt — dtdr \/E< R2> TR (2.88)
Then,

R
R
— |Rtanh™! \/Er (289)
- 2
Ry\/E—1+ I o
= 0.

17



Chapter 2. The Expanding Universe

2.5 Distances

1. The proper distance is given by ¢, = S,_o(x) = x for a flat universe (kK = 0). From
Eq. (2.67) of the textbook:

fo dt
0, = - [ =
0 X(Z> /t; a(t)
* dz

0 fl(z)
B W/
HO\/_/

dza®? (cf. Eq. (2.144) of textbook)

dz'(1+ 2')7¥?(cf. Eq. (2.63) of textbook)

oy (1_ ¢11+—z)

1
= 3t, (1 — \/H——z) (cf. Eq. (2.151) of textbook), (2.90)

where we also plugged in €2,, = 1 for a matter-dominated universe in the last line. Note
that this equation can also be inverted to get an expression for (1 + 2):

lo
1 =1—-— . 2.91

i ( 3t0) (291)
From Eq. (2.71) of the textbook, we then have

dp(2) = (14 2)dy(2) = (1 + 2)6y = €, (1—f—0) . (2.92)

3t,

When ¢, — 3t,, d;, — oo. This corresponds z — oo or a(t) — 0, which is exactly the Big
Bang singularity. This implies everything was infinitesimally close at the singularity.

2. By Eq. (2.83) of the textbook,
2 1 1
da(z) = A (2) = b = — <1 — ) : (2.93)

1+z 1+2z H, Vi+z/) 142

A plot of the angular size as a function of the redshift z is shown in Fig. 2.2] Indeed,
the angular size of these objects at first decreases with distance, but then becomes larger
beyond a critical distance.

To find the maximum of the angular diameter distance (i.e., the minimum of the angular
size) of the object, we take the derivative with respect to the redshift z and set the
derivative to 0:

o_ ddy _ 2 N B
Codz Ho | (T4 zam)® 2(1 4 zm)™?

(2.94)
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Chapter 2. The Expanding Universe

Angular Size in a II:Iat,I Matter—nginated Univgarse

08 A

Angular size 66

06 .

041 1

0'2_ L Il 1 1 1 1 ]
0 2 4 6 8 10

Redshift (z)

Fig. 2.2: The angular size 66 as a function of redshift z.

Thus,

5
o= . 2.95
Zoin = (2.95)

At this redshift, the angular diameter distance is

8
C2TH,

(2.96)

dA (Zmin>

From Eq. , the angular diameter distance vanishes at two points: z — 0 and z — o0,
or in other words, the angular size 60 = % for an object with physical size D diverges.
The z — 0 singularity corresponds to objects that are right on our eyes at present time,
which of course, occupies an infinite angular size. The z — oo corresponds to the Big
Bang singularity, at which point everything was so close to each other, and thus, also
takes an infinite angular size, as it spreads out the whole universe at present time.

2.6 Flatland cosmology

1. The metric tensor is g, = (—1,a25ij). The calculation and reasoning are no different
from the 3-spatial dimensions case. Thus, the only nonzero components are the same as
Eq. (2.45) of the textbook

0 .
sz = aa/(sij,

| 2.97
iy (297)
a

except that now even F;k vanishes because g;; = a252-j has no spatial dependence.
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Chapter 2. The Expanding Universe

2. Since the Christoffel symbols are the same as the 3 + 1 dimension case, so are the Ricci
tensor except that J; = 2 instead of 3 now. From Eq. (2.121) of the textbook, we have

Roo = _aOFBi - ngréi
. N\ 2
(s ()
a a
i a\’ a\>
() ()
a a a

- 2%
a
Similarly, from Eq. (2.122) of the textbook, we have
Ry = aOF?j + F%OF%‘ - F?lré‘o - Fiorgl
= (6* +aid + 24> — a* — a*) 6
3. First note that the Ricci scalar is given by

y 1 a 2 . .
R=g" RW:—ROO%—?(SJRU:25%—?(&2—1—@@):2

From the Einstein equations,

1
Goo = Rop — §R900 = 8nGTy

. . . 2
—2% 4 2% ¢ (9) — 87G)p

a a a

N
(—) =8nGp]|,
a
and
_ 1
i [a\®
(C.L2 + CLCL) 51] 2— -+ (—) (IQ(SU = 87TGCL2P6”

a a

4. Note that the conservation of the energy density is given by v = 0
VI =0 = 0,T§ + I\ Ty — TpTh =0
0Ty + TipTy — TeT? =0

a

20

29+<
a

a
a

)]

(2.99)

(2.100)

(2.101)

(2.102)

(2.103)
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Let P = wp. Then, _ _
P a
—=-2-(1 : 2.104
S = 20w (2104

Thus, we have

poca 20TV (2.105)

from which we can read off n = 2(1 + w).

For a pressureless fluid, w = 0, and thus, p o< a 2. The energy density decreases as the
inverse of area growth, as expected.

5. Using the 2 4+ 1 dimension version of the first Friedmann equation (cf. Eq. (2.101))), and
the scaling of the energy density (cf. Eq. (2.105))), we have

N\ 2
(2) o g 20+w)
a

1
a ot

a o /0T ] (2.106)

1

We can read off ¢ = .

2.7 Friedmann universe

1. The Friedmann equation is

a\’ p k
ey £ & 2.107
(a) 3 @®RE ( )

where p = —£%5 + A (cf. Eq.(2.107) of the textbook, with A explicitly split out). Hence,
we can rewrite the Friedmann equation as

Lo po 1 K A 2
50, — 6 a(1+3w) —|—5—66L —O (2108)

The first the term can be recognized as the kinetic term, while the rest is the potential

~po 1 K A,
V(a) = —gm -+ ? - Ea . (2.109)

The sketch of V(a) for the 3 cases are shown in Fig. [2.3|
Note at a,,,y, @ = 0 and hence, by Eq. (2.108)), a,,. is determined by where V (a,,,) = 0.

(i) k=0, A <O0:

1 éa2 =0
6 a(1+3w) 6 max — ¥

max

1
p0>3(1+w)

=(—== ) 2.110
O = (=52 (2.110)

Since A < 0, the RHS has real solution, and hence, a physical a,,,.

21



Chapter 2. The Expanding Universe

(i)k=0,A<0

V(a)
0.5~

R — k=+1

10 — k=-1

-150

(i) k=41, A=0
V(a)

(iii) k=0, A > 0

Fig. 2.3: Potential V' (a) for the three cases.
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Chapter 2. The Expanding Universe

(ii) k= =%£1, A =0:

po 1 L
G o
2\ 5w
R2\ T
(o = (ipog 0) , (2.111)

for k = +1. However, only for £ = +1, does this have a real solution and hence, a
physical -

(iii) k=0, A > 0:
The formula is already given by Eq. (2.110)). However now, since A < 0, there is no
real solution and hence, no physical a,,,.

These results can be confirmed with the sketch as well. The a,,,, only exists for those
V(a) that can cross zero point.

2. From Eq. (2.157) of the textbook,

1 1
a"+ —a=—-(p—3P)a’,
5 6
1
'+ —a= p (1—3w)a®,
5 6
1 Po -3
" w
+—a=2001-3 , 92.112
' = (15w 2.112)
where p = —£% is again invoked.

ol

The solution can be simply verified by explicitly plugging into the differential equation.

Since the trig function sin can be at most 1,

2\ e
A=a,, = (pofo) . (2.113)
0=a(n=0) = 0=sin(B) = B=mn, n=0, £1, £2, ---. (2.114)
We can choose the principal n = 0 and set . Then,
9 % 2
R\ v 143 1+3w
a(n) = (p03 0) [sin( +2 w}%)] . (2.115)
From Eq. (2.115]), the big crunch happens when
. (1+3wn
— | =0. 2.116
sin < 5 Ro) ( )
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Chapter 2. The Expanding Universe

(i) Pressureless matter (w = 0):
This happens when

—— =7mn = n=2mnR, n=0, £1, £2, ---. (2.117)
2R,

As the n = 0 principal can be interpreted as the Big Bang, the n = 1 principal then
should be interpreted as the Big Crunch. Hence,

. (2.118)

By the definition of the conformal time 7, since the photon travels on null path,
the conformal time tells exactly the distance the photon can travel. In the case of
a pressureless matter universe, n = 2w R,. Hence, the photon travels exactly one
circle before the universe ends.

(ii) Radiation (w = %):
This happens when

Ri =mn — n=mnRk,, n=0, +1, +2, ---. (2.119)
0

As the n = 0 principal can be interpreted as the Big Bang, the n = 1 principal then
should be interpreted as the Big Crunch. Hence,

. (2.120)

In the case of a radiation universe, n = mRR,. Hence, the photon travels exactly half
circle before the universe ends.

2.8 Einstein’s biggest blunder

1. For a static solution to exist, the scale factor a must remain a constant in the whole
history of universe, which requires all of its time derivative to vanish. The 2nd Friedmann

equation says

a 4dnCG
- —— P). 2.121
o Tt sp) (2.121)

Since both density p > 0 and pressure P > 0, the RHS remains negative. In the LHS,
as the scale factor a > 0 always, it must always be that ¢ < 0, and it never vanishes.
Therefore, there is no static solution to the Einstein equations.

2. With the addition of a cosmological constant A, the Einstein equations are modified to
G", =8rGT", — Ag",. (2.122)

Hence, for a pressureless matter only universe, the 1st Friedmann equation becomes

. 2
a 1@ k A
@) = _ _ 4 9.123
() B (2.123)
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The 2nd Friedmann equation (with P = 0) becomes

a 4G A

a

. 2.124
3 5 (2.124)

For the a = 0, we then have

K= 9Gp,] 2125

Plugging this back into the fist Friedmann equation Eq. (2.123]), and require it to vanish
as well, we then have

4G k

3 m T PR
Since p,, > 0, a > 0, and Ry > 0, it must be that £ > 0, and hence, the universe is
positively curved (k = 1), and its spatial curvature is

Ry= | —> . (2.127)
ArGa”p,y,

This universe is static provided that p,, is a constant such that any higher time derivatives
of a vanish identically.

(2.126)

3. From the continuity equation, we know that (cf. Eq. (2.108) of the textbook), p,, o a”°.

Combined this with the hints, we have
14 6(t) < a?,
St)oca®—1=(14€(t) -1~ =3¢t)]|. (2.128)

Hence, the two perturbations are related to each other.

Now, plugging this into the 2nd Friedmann equation Eq. (2.124)) with A = 47Gp,, o, we

have

a A ArG _3

— = ——Pnol(t) = — -1

a 3 pm,O ( ) 3 pm,O(a’ )

A A

E = 5(a—a—Q) %5(1—{—6—1—{—26):/\6, (2.129)

which has solution
e = AeV™M 4 Be™VM (2.130)

As the 6(t) o< —3e(t) (cf. Eq. (2.128))), both perturbations grow exponentially with time,
and this static universe is unstable.
2.9 The accelerating universe

1. Note that the deceleration parameter is just ¢(t) = —% = —20EE The 1st FE with no
radiation can be written as (cf. Eq. (2.204) of the textbook)

.\ 2
(9) =H° = Hj [0+ Qy + (1 — Q)a”?] (2.131)

a
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Chapter 2. The Expanding Universe

and the 2nd FE with pressureless matter and a positive cosmological constant A can be
written as (cf. Eq. (2.137) of the textbook and Eq. (2.124))

g = —?pm + % = H} <—%Qma_3 + QA> . (2.132)
Hence,
. 1 -3
q(t) = —a—Z = —212‘3 55 - Qma_ffgj " ElgiAQo)a‘Q (2.133)
The plot is displayed in Fig. [2.4]
0.45—
02}
G o.of—
02}
_0'6(;)10 02 04 06 08 1.0
a
Fig. 2.4: ¢(t) as a function of a(t) for our universe.
Plugging in a(t,) = 1 today into Eq. (2.133)), we see
1
do = 5% — |- (2.134)

For our universe, we get

’ (2.135)

which is a negative number so our universe is accelerating its expansion.

. Note that if we take the time derivative of the deceleration parameter directly and divided
by the Hubble parameter:

. ) . .2 92
aa aaq a a
%:— a3 —?+2?:—J+q+2q2- (2.136)

To get an easy form for taking time derivative of ¢, we first take the time derivative of

the Hubble parameter
god(ay i C'LQ—d—H? (2.137)
S dt\a) a a] a ’ )

Hence, the 2nd FE can be written as
a . 9
Z - g+ H (2.138)
a
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—20d FB @ can write it as

Then, since we know ¢(t) = —? = — T FE
H+ H? H
g=— = 1 (2.139)
This allows us the . _
_ H _H?
qg= _? + 2? (2.140)
Hence,

. ) . . 2 . .
q ) H> H H H H

H
Taking the time derivative of the 1st FE in the form of Eq. (2.136) of the textbook
successively and also invoke the continuity equation (p = —3Hp) for matter:
- 8rG k k
QHH = 25+ 29— H = —87GHp+ 2—— H, (2.142)
3 a RO a RO
. k
a RO
Taking Another time derivative and invoking the continuity equation again:
JT = —4xGp+2—F o = 197GHp— 21 (2.144)
= —4r ———H =127 —2——H. .
PR PR
Plugging these back into Eq. (2.141]), we have
1k
J=14 55— 2.145
o*H* R} ( )
3. At the point of matter-cosmological constant equality p,, .o = pa
Lo Pk ot (14,
pm,O pm,O
2y 3
=(1
O, 1/3
= —1]. 2.146
= (1) (2.146)

This is the point that the universe starts to be dominated by the cosmological constant.

In our universe, with 2, = 0.7, we have

|

27
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4. The point universe start accelerating is defined by

Gace = 0, Guee < 0. (2.148)
Since a > 0 always, this is the point
gee = 0. (2.149)
Plugging into the 2nd FE, one has
4G n A 0
3 pm,acc 3 -
pm,Oa_3 - 2pA =0
1/3 Q.\ /3 9_90 \/3
Yoy = (Qp—A) 1= (2—A) 1= (—m) —1]. (2.150)
pm,O Qm Qm

For our universe, plugging €2, = 0.3,

2151

is the redshift at which the universe begins accelerating.

5. From 1st FE,
H? = H§ [Qma + (1 = Q,,)]

o= HO\/Qmof1 +(1—-9Q,,)a>. (2.152)
Define u* = @, then
2
da = gu*l/i"du. (2.153)
Integrating Eq. (2.152)),
3 3 [ da’
—Hy\/1-Q,,t ==
2 2 0 \/( Q,, > —1 2
0 a +a
B /“ du/
0 u1/3\/<198m) W23 3
B /“ du’
0 Q.. 2
(Hlm) o (2.154)
v 1"
= |sinh™!
Qm
1-Q,, 0
1-Q
= sinh ™ < 0 “u
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Hence,

)
—~
=

I

VR

—

2

oIt
3
N~

w

&,

B

=

Do

~

w
VR
N |
=

[—

|
je)
3

~

~~_

(2.155)

from which we can read off

and

1/3
A= L 2.1
(2) | (2.156)

o= §H0\/1 —a.l. (2.157)

e At early universe, we can Taylor expand the sinh(z) — z. Hence,

a o t2/3, (2.158)

which is the correct limiting behavior for a matter-only Einstein-de Sitter universe
(cf. Eq.(2.147) of the textbook).

At late universe, we can use the exponential form of sinh(z) = %_I and note that
the e” dominates the late time behavior:

a o efov el (2.159)

which is the correct limiting behavior for a cosmological constant-only de Sitter
universe (cf. Eq.(2.147) of the textbook).

2
a= gAa(sinh(at))_l/3 cosh(at). (2.160)
i = gAaz(sinh(at))_4/3(cosh(2at) —2). (2.161)
a = 2§,714104“9’(sinh(04t))7/3 cosh®(at). (2.162)

Then, we have

aa 1 cosh(2at) —2 |3 9
=—-—=—-——-—-"—=|=sech”(at) — 1/, 2.163
1 a’ 2 cosh®(at) 2 (at) ( )

where A is given Eq. (2.156|) and « is given by Eq. (2.157)). For the jerk,

... 2
=20 =[], (2.164)

a

as expected for a flat universe.

Invert the solution and plugging a(t,) = 1. We can estimate the age of our universe

as
2 1 11 1-9Q,,

m

where we have plugged in €, = 0.3 and H, = h x (9.777 Gyr)™' with h = 0.674
(cf. Appendix C.2.3 of the textbook).
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6. We first need to figure out the comoving distance x. From Eq. (2.67) of the textbook,

X—/%i— A / « (2.166)
t1 (Z(t) a H(I/2 /2\/Q CL ]_—Q ) .

Let s == =1+ z. Then, —a’*ds = da. We have

(2.167)

X_i/s ds’
HoJv\fa,s%+ (1-q,)

which unfortunately has no closed form in general and has to be integrated numerically.
Using Eq. (2.71) of the textbook and the fact that in flat universe dy;(z) = x(z), we have

dp(z) = (14 2)x(2), (2.168)

where x is given by Eq. (2.167)).
Doing the integration numerically, the figure is displayed in Fig. [2.5]

= Q _m=1 Q m=0.3

dLz

0.1
0

Fig. 2.5: Luminosity distance (in units of ¢/H,) as a function of redshift in a flat universe.

At z = 0.5, the luminosity distances (in units of ¢/H,) of the two models are about

055 Q =1
d,(2) = m . 2.169
12) {066 Q. =03 (2.169)

Hence, the accuracy needs to be at least

0.66 — 0.55
0.66

~16.7 % (2.170)

to distinguish the two models.
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2.10 Phantom dark energy

1. e Invoking continuity equation, we have
px oc a 20X, (2.171)

Since wy < —1 for phantom dark energy, the power is positive. Thus, py increases
with the scale factor a.

Next, we need to prove that the universe is, once expanding, always expanding such
that the scale factor increases with time. From the 1st FE,

H2
? = chfB + QX(lig(lerX). (2172)
0

For an expanding universe to turn to shrinking, there must be at turn point H = 0.
However, as —3(1 + wy) > 0, the RHS never goes to 0.

Therefore, as the energy density of the phantom dark energy py increases with the
scale factor a, and a increases with time, we conclude that the energy density of the
phantom dark energy must always increases with time.

px(a)
Qx(a
x pcrit(a)
_ pX(a) pX,O pcrit,O
Px,0 Perit,0 pcrit(a)

H?

—3(14wx) () 0 (2.173)
X,0,,2
H

= Qx (QX,O + an,o@:inY1

Q77103 >_1
=14+ =—=a"% .
(a2

=a

e Inverting the above,
1
0 Fux
a= [ﬂm; - 1)] - (2.174)
Qm,O

Plugging the values Qx y = 0.75, Q,, o = 1 =Qx = 0.25, wx = -2, and Qx = 0.999,
we have

- (2.175)
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2. Integrating the 1st FE, we have
d

1 /°° a
oo Joma g o

~ i/"o da
He Ja. \/m (2.176)
(1+3wx)/
A \/Q_X* /
3(14wx)/2

= a s
S+ 3wX)H* Qx

daa

where we have used the fact that as a ' *“* diverges as a — oo, the contribution from
—1-3wx -1
a > a  for large a.

We can solve for a, using Eq. and the fact that at t,, we have Qx, =Q,, ., = %

Qo %
= ’ . 2.1
. (Q ) (2.177)

m,0

Hence,

At = — (2.178)

14w
22 ( Qx o ) X

m,0

The RHS is a perfectly positive finite physical quantity. Hence, in such a universe, ”Big
Rip” is real.

3. Recall that the redshift of the wavelength is given by (cf. Eq.(2.56) of the textbook)

t.
MACMB. (2.179)

P a(tous)

As a(t;,) — oo and both a(tcyp) and Aqyp are finite, we conclude that |\, — oo|.
Hence, the wavelength of CMB photons would be infinitely long, and the universe becomes

really ”dark”.

rip)
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The Hot Big Bang

Exercise 3.1

In the relativistic limit (z — 0), we have

J1(0)

53

3.1
e +1 (3:-1)

Ji s

The quickest way to compute J_(0) is to invoke the identity from Eq. (D.34) in the textbook
appendix (which also provides the fastest route to 7_(0)):

= | dr (3.2
e J_(0) = T()C(4) = 31¢(4) = [6¢(1) . (33)
Similarly,
Lo- [ N dééfj 1
— /Ooodﬁegfj . —Q/OOOdfezf—S_l
—J(0)—2x (%)4 /0 " d(26) 6g§f_>31 (3.4)
1

Exercise 3.2

We begin with a quick and rough derivation. Starting from Eq. (3.11), Eq. (3.12), and Eq. (3.27)
of the textbook, and noting that in the non-relativistic limit (z > 1), we find:
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We shall derive these in a quick and dirty way. Starting from Eq. (3.11), Eq. (3.12), and
Eq. (3.27) of the textbook, and noting that in the non-relativistic limit (x > 1),

ar — 271' T ' '
Thus, we conclude p = T 2dn On the other hand,differentiating the number density expression

as in Eq. (3.31) of the textbook with respect to T yields

dn m 3n 3
2 2 On\ 2
p=T"— T =T (T2 +2T) mn—|—2nT . (3.6)

Comparing this with the non-relativistic expansion E(p) = /m* + p° ~ m+2- and referring to
Eq. (3.9) of the textbook, it’s evident that the mn term comes from the rest mass contribution,

2
while the %nT term comes from the kinetic energy 7-.
Now, in the non-relativistic limit,

P(T) ~ 31n (Qi 5 / Epf (0, T)p (3.7)

Comparing with the result above, we obtain

1 3
P(T) = o x 5T x 2m = : (3.8)
Exercise 3.3
TdS = dU + PdV — udN. (3.9)

Using S = sV, U = pV, and N = nV, this becomes
Td(sV)=d(pV)+ PdV — pd(nV),

ds dp dn
Ts—p—P—pun)dV+V(T— - — — ) dt =0. 3.10
(T's—p pn)dV + ( T % +udt) (3.10)

Each bracketed term must vanish independently. The first gives

p+P—pun
=—. 3.11
. (3.11)
Now, recall the continuity equation:
p+3H(p+P)=0
p=—-3H(Ts+ pn), (3.12)

where we used the result above.
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The vanishing of the second bracket implies

Lo
TP
. 1 1,
—an (s Ba) - L
S 3 s+ Tn Tn
a’s+ 3aas = —3a2a§in — as%n
d(sa®) 14 d(na®)
— . 3.13
dt T dt ( )

The total entropy is conserved if the right-hand side of Eq. (3.13) vanishes. This occurs either

3
when /T — 0 (i.c., the chemical potential is negligible), or when 4% — 0 (i.e., the total
particle number is conserved).

Exercise 3.4

Eq. (3.82)—(3.84) from the textbook are still valid, except we now treat X, = 1. Then,

(T T )3/2 7T2 HO\/Q_
dect0 ( ) nor
2 3/2 _ i 0\/_
(TO (]' + Zdec)) 2C(3) nor ;

( ™ Hy/Q,,
Z ec =
¢ 2¢(3) nor

2/3
) Ty —1~346], (3.14)

where we have plugged in the values Hy = 0.674 x 2.133x 10™* eV, Q,, = 0.315, n ~ 6 x 1077,
or =2 x 107> MeV 2, and Ty ~ 0.235 meV (cf. Appendix C.2.3 of the textbook).

3.1 Chemical potential of electrons
1. Using Eq. (3.4) and Eq. (3.8) of the textbook for fermions, we obtain

o) 2 2

n—n=-9_ dp L — b
272 2 2 2, 2
™™ Jo 6(\/p+ u)/T+1 e(\/p+ +M>/T+1
[ E ] (315
o272 0 V41 TV
_ g
:WT:*I(@’

where we used that the chemical potential of the antiparticle is opposite in sign to that
of the particle. We also introduced the dimensionless variables £ = p/T and y = p/T,
and took the relativistic limit m << T
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We now apply a linear change of variable: ¢ = ¢ — g in the first term and ¢ = ¢ + y in
the second. The integral becomes

I(g’):/ d£(§+y) _/ é‘(£—y)

et +1 e +1
(€ +y) A€+ [ (=) Y —y)
= d + [ d - def~>——2 4+ [ d¢~>——L
/0 g@5+1 /y€€+1 /0 gef+1 /ofefjtl
00 / 2 / 2 /! 2
:/ dg,{(f +y) /— (¢ —y)}+/yd§,[(—§/+y) L& /—y)} (3.16)
0 et +1 0 e ¢ 11 et +1
5/ Y !/~ 2
=14 d d —
y/o 56 - /O £ —y)
7'('2 y3
:gy‘i‘g,

where I flipped the sign of ¢ in the second term of the second line. Substituting this
result into Eq. (3.15) gives

n-n= e ()4 (4] .17

2. From subsection 3.1.3 of the textbook, we know that the baryon-to-photon ratio n = ™ =

N
"% remains conserved after the epoch of electron-positron annihilation. Moreover, since

N
the universe today is electrically neutral, we have

_ nB ~ Tlp - nﬁ ne né
= n., - n,  n,
Then, using Eq. (3.76) of the textbook, we get
2C(3
Ne — Ng RNy = NN, = 1) X LQ)T:S. (3.18)
T

Comparing this result with Eq. (3.17)), and using g, = 2, we find

s [ () ()] = 519

Plugging in the observed values n ~ 6 x 107 yields

(%) {73 n (’”‘?)2} ~4x 1077 (3.20)

Since the right-hand side is significantly less than 1, and the bracketed term on the left-
hand side is definitely greater than 1, it follows that %= < 1. Thus, we can neglect the

(%)2 term and conclude that % ~1071%~ 1077
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3.2 Conservation of entropy

1. From Eq. (3.4) of the textbook with y = 0, we have
of BT E

of _ R 3.21
8T (€E/T £+ 1)2 T2’ ( )
and
of _ M 1dB_ T p (3.22)
p (DT x1)2Tdp  (PT 1) ET '
Inspecting Eq. (3.21)) and Eq. (3.22)), we observe that
of  E*Of
From Eq. (3.10) of the textbook,
@_P g /d3 af
or  (2r)? ar 3E
__9 a (PN PE
( 7r ap 3T
_ 9 P’'E | p' P°E
_ (%)3/@ [/dp( - +3ET)f {f i (IBP)
S /d3p E+ v f—0 (f > 0asp— o0)
(2m)° T  3ET
— # . (cf. Eq. (3.9) and Eq. (3.10) of textbook)  (3.24)

2. Note that for a massive spin-1 boson, its internal degrees of freedom is gy = 3. For the
neutrino-X system, we have

3+ix2=2 T2=my,
gxs =

T o1
§X2—4 T<mX

(3.25)

Similarly, since entropy is separately conserved for the neutrino-X system,
g.s(aT,)? = const, (3.26)

throughout the annihilation process. Thus, for the neutrino, a7, now should increases
by a factor of (£ )3 while the photon thermal bath has the energy transferred from the

electron-positron annihilation and a7, thus, increases by a factor of (%) 3 as the textbook
discussed. Thus, the present neutrino temperature in this case is

7\ 3 A\ 3
(ﬁ) Tuo = (ﬁ) T

1
76\ 3
TV,O — (ﬁ) T’y,O . (327)
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3.3 Degenerate neutrinos

1. Assuming p, > 0, from Eq. (3.9) of the textbook, we have

3
9y 3 9y p
T) = Epfp = dp———. 3.28
p(T) (%)3/ pfp 27Tg/ pep%ﬂ (3.28)

Now, note that the Heaviside step function H(z) can be defined through

1

This suggests
g 3
o) =2 [ ap
A S
9o [T s (1 P I
~ dpp"H | = — T = — —
2/0 pp (2 2/@) (o, > 7 — )
9y H 3
= d
QWQ/O pp
Gty
= = (3.30)
8T
For antineutrinos, we have p; = —pu, < 0, by assumption. The effect is to change the

2 21
other words, in the integral vanishes unless p < —u, < 0. However, since momentum is

always positive, the integral always vanishes. Thus,

argument of the Heaviside step function in the above derivation to H <—l — 5L > or in

py =~ 0. (3.31)

Note that the above conclusion would be reversed if the neutrinos have p, < 0. Thus,
the combined energy density of degenerate neutrinos and antineutrinos can be expressed
as

gl
Pv +p17 ~ 2
8

(3.32)

2. Eq. (3.62) of the textbook still holds:

40\ /3
T,,:(ﬁ> T,. (3.33)

The total energy density of degenerate neutrinos and antineutrinos is

4
Gy |ty

Pyt Py = eff‘—2|- (3.34)
8
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Then,

Pv + Pu S Perit

gl 11\
Ng?o5— <6 x 10°T = 6 x 10° x (—) T!
8 4

s o
81 x 6 x 10° x (Z) ; Nﬂ] ~ 23.5], (3.35)

|
T, ~

where in the last step, we have plugged in the values g, = 2 and Ng = 3.

3. The degenerate neutrinos contribute extra component of energy density to the universe.
From Friedmann equation (cf. Eq. (3.129) of the textbook), this larger energy density
implies a larger Hubble expansion rate H as the universe was still radiation dominated
at this point. This then implies an earlier neutron decoupling and then freeze-out, i.e.
discussion following Eq.(3.120) of the textbook. This says there are more neutrons to
protons, and then there are more deuterium formed, and hence, an enhanced helium-4
abundance (This is actually already discussed in the textbook in the paragraph at the
end of the subsection Helium.).

3.4 Massive neutrinos

1. Simply from Eq. (3.12) of the textbook, and recall that neutrino is a fermion with internal
degree of freedom g, = 2:

__/ dp p-+m,
0 exp \/p —|—m/T}
—/ apt VP (3.36)

eu—i—l

T o ENE+mL)Ty
— |z d
2 0 : e 41
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o O m )@
=y déw +m2)(€T2)
™ Jo

B e+1
_/ 2T
e—|—1

m2 T} 1 2
v + d -
— P 2T2 / 3 (ef—l 625—1)

(3.37)

T4m2
= Pvo 24T_3
=l (1422 5)
puO 77‘(‘2 TE )

where I have used p,, = Zgo T? in the last line.

. Following the discussion of the exact solution of two-component universe in Subsec-
tion 2.3.6 of the textbook, the radiation contribute no source term to the second Fried-
mann equation. Therefore, the massive neutrinos can leave imprints on the CMB anisotropies
only if it behaves as a non-relativistic matter at the point of photon decoupling. We
also know that the present 7,, = 1.95 K. Note that after the neutrino decoupling
(T ~ 1 MeV), which happens much before the photon decoupling (T' ~ 0.25 eV), the
neutrino ¢,4(7,) does not change. Invoking the consequence of entropy conservation
Eq. (3.54) of the textbook:

9.5(T,)T2a® = const, (3.38)

we have T oc @' o (14 2). Thus, we can deduce that at the point of photon decoupling:

T, aee = (1 + 2gee) Tpo = (14 1090) x 1.95 K = 2127 K = 0.183 eV, (3.39)

where I have plugged in values from Eq. (3.166) of the textbook. This sets the lower
bound of the mass of neutrinos for the neutrinos to becomes non-relativistic. Thus, the
smallest neutrino mass that is observable in the CMB is

> T, gee ~ 0.183 eV | . (3.40)

m

. Using the lower bound on the sum of the neutrino masses from oscillation experiments,

we deduce
> m, >0.06 eV 2 T, xx. (3.41)

Again, invoking the consequence of entropy conservation, we have the redshift for the

neutrino to become non-relativistic no later than

_Toxn o 006eV 006V
ZV,NR - - ~ - - —4
T,0 1.95 K 1.68 x 10 eV

—1~[356]. (3.42)
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5. Note that at the point of neutrino decoupling, neutrino still behaves as relativistic, and the
thus, the Eq. (3.65) of the textbook still applies at least up to the point neutrino becomes
non-relativistic. However, since neutrino becomes non-relativistic long after neutrino
decouples from the thermal bath and it also does not decay, its number is conserved
and its number density follows n, « a™® from Eq. (2.95) of the textbook. On the other
hand, we also know that the photon number density, after the decoupling of the electron-
positron annihilation, also follow n., o a~®. Thus, the Eq. (3.65) of the textbook still
applies today even though neutrinos are massiveﬂ:

4
1

X —n, ~ 112 cm ™ (3.43)

oo

~
nVN

—_

per flavor, where I have plugged in n, o ~ 410.7 cm .

6. However, for the energy density of neutrino, we should use Eq. (3.32) of the textbook:

Zpy = Z (mu + g V,O) n, ~ Zmunzn (344)

where I have approximated the relation by using the fact that T, , = 1.68 x 107% eV <
> > m, ~ O(0.01 eV).

Qi = 2=Prq
p'y,O

Z munu,o
P~,0

= 25, Mg g2 (3.45)
11 P~.0

3 410.7em”

~— X —
11 0.260 eV cm

_my

94 eV’

Q

2
Q. h

X 2473 x107°) “m,

where I have plugged in values from Appendix C.2.3 of the textbook.

From oscillation experiments, Y m, > 0.06 eV, this translates to

Zmy 006 eV _4
= ~|64x1 . 4
o1y~ gaey 0410 (3:46)

Q,h°

This is not far away from the current cosmological bound ,h* < 0.001.

7. If a neutrino species is heavy enough to become non-relativistic well before the BBN,
it simply behaves like a cold dark matter. This is the essence behind model of sterile
neutrinos.

'This also justifies why we used T, = 1.95 K in the above derivations.
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3.5 Extra relativistic species

1. Recall from Eq. (3.23) of the textbook that for a relativistic species, the energy density

is given by
2
1 b
pr= g Tix . 00 (3.47)
30 3 fermions
Thus,
Ty i p
ANg= X 29X Jr Do%0m (3.48)
Pu T, 3 fermions

where I have used g, = 2. The spin of the new particle sy enters through the internal
degrees of freedom. Assuming that the particle X carries no SM gauge charges (electrically
neutral, colorless, and with no weak isospin), and that if it is a fermion it is either
Majorana-like or possesses only a single chiralityﬂ then if massive,

(

1 s=0
2 s—%
gy =25x+1=¢3 s=1, (3.49)
3
4 S 5
5 s=2

and if massless,

1 s=0
= ) 3.50
Ix {2 all other spins ( )

It is well known from QFT that there is no interacting theory for massless particles with
s > 2in 4D spacetime. For the above reason, massive particles with s > 2, if fundamental,
violate the unitarity bound because their scattering amplitudes grow without bound with
energyﬂ. Therefore, we restrict attention to spins with s < 2.

: 3
From entropy conservation, g,,;(aZ})” = const, we have

4
T ! *S T ec,Vv 3
(—X) - (—g (e )) . (3.51)
Tu g*s<Tdec,X)
The effective numbers of relativistic species in entropy of X and of neutrino evolve together

until X decoupled from the thermal bath, which is why Tj.. x comes into play.
Putting everything together,

4
_ Px g*s(Tdec,V) 3
ANg = — = gx (T— X
Pv g*s( dec,X)
*These assumptions are made for a simple expression of gx- Relaxing any of them would increase gx
multiplicatively. In reality, such a particle would almost certainly decouple from the SM thermal bath well

before the EWPT since it interacts only feebly with the rest of the plasma, unless some exotic BSM interaction
is introduced. This is exactly what would happen if there were a right-handed neutrino.

bosons (3.52)

fermions

NI =3l

3This is exactly analogous to the case of the longitudinal polarizations of massive weak gauge bosons, which
would violate unitarity bound without the Higgs mechanism. They must possess a well-defined massless limit
to be fundamental particles.
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Recall that neutrinos decouple shortly before electron-positron annihilation, at which
point gus(Thee,) = 2+ & x 4 = &, Meanwhile,

21T shortly before QCDPT

4
Gis(Taee,x) = G shortly after QCDPT, but before y, 7 annihilation , (3.53)
% shortly after QCDPT and p, 7 annihilation
we have
1y 0.0398 shortly before QCDPT
= bosons
AN g ~|gx X {I formi 0.218  shortly after QCDPT, but before p, 7 annihilation |,
= fermions
2 0.409  shortly after QCDPT and u, 7 annihilation

(3.54)
where gy is given in Eq. and Eq. . The lesson is that the earlier X decou-
ples, the smaller its impact on AN.4. This is consistent with the boxed discussion below
Table 3.2 of the textbook, which notes that if neutrinos are Dirac particles, half of the
degrees of freedom must have decoupled in the very early universe. The Planck constrains
Neg = 2.99 £0.17 at 20 including BAO data [2], while the SM predicts N.g = 3.046. We
therefore observe that relativistic species decoupling after the QCD phase transition are
essentially ruled out at the 20 level.

Side Remark: An aside on neutrinos, which the textbook does not explain very
clearly, is that there is no issue with them being purely Dirac. The reason is that
the right-handed chiral field does not couple to any SM gauge interactions. As
a "neutr’-ino, it is electrically neutral. As a lepton, it is colorless. And being
right-handed, it carries no weak isospin. Since it interacts only with the Higgs bo-
son, whose Yukawa coupling with neutrinos is extremely small (assuming neutrino
masses arise via electroweak symmetry breaking as for the other SM fermions),
it must decouple from the thermal bath well before even the electroweak phase
transition, leaving negligible imprints on Ng.

.

2. From Eq. (3.64) of the textbook,

4 4
7 4\3 7 4\3
(3.55)

For a radiation-dominated universe, H oc /p o< ,/g.. Hence, an increase in g, increases
the Hubble expansion rate H. The discussion then parallels that in Problem 3.3 part 3.

3.6 Gravitinos as dark matter

1. Starting from the general Boltzmann equation (cf. Eq. (3.93) of the textbook), where the

RHS is given by the gravitino production interaction rate I'jn,, we have

1 d(n;a®)
S =Ty, (3.56)
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Let N, = 2“2, and recall that entropy conservation (cf. Eq. (3.44) of the textbook) gives
d(sa’ d
d(sa’) _, _, ds

= = —-3H 3.57
dt dt & (3:57)
so the Boltzmann equation can be rewritten as
dN, 1dn, n,ds dn, I';n
=—-— - = — +3H =214 3.58
ot sdt g2dt (dt n) s (3:58)

In the radiation-dominated universe, H o< 7% (cf. Eq. (3.55) of the textbook), and away
from particle mass thresholds, T oc ™" (cf. Eq. (3.54) of the textbook), so
dI"  dT7T'da
— = ——=—HT. .
dt da dt (3:59)

Hence,
dN, dN, dt ang

dr At AT HTs'
Integrating with respect to the temperature of the current universe and cutting off at the

reheating temperature gives
TrdT Tyn
N, N/ —2 1 (3.61)
0

(3.60)

T H s

Note that although we used an approximation valid during the radiation-dominated
era, we have integrated from zero temperature. However, since gravitinos are produced
most efficiently during reheating after inflation, and since T > Tywpr ~ 100 GeV >
T\LR equal ~ 0.80 eV, the lower-temperature regime only alters the result negligibly.

. 3 n
UsmgFgmé—gl,wa( ) andHN—

Mp,’

TrdT T, Tr 4T T
N, g~ / B —| & (3.62)
0

9 T Hs J, Mp |Mpy

Side Remark: A simple alternative derivation follows from dimensional analysis.
The only relevant scales are Mp, (since the gravitino arises from supergravity, whose
natural scale is Mp;) and Ty (the typical energy available to produce gravitinos).
The number of particles in a comoving volume is dimensionless, so it must scale

n n
as either <A§—’;) or (%—?) . The correct choice has T in the numerator: taking

Mp, — oo would decouple gravity, so N, — 0 (similarly, N, — 0 as T — 0).

Thus, only <]5—1;) has the correct scaling. Unless some mechanism forbids the

lowest-order term, the n = 1 contribution dominates. Therefore, N, ~ 1\7/;_};

2. If there is only one massless neutrino species, then the relativistic species today are
photons plus one species of neutrino. The present effective number of relativistic species
in entropy is

7 4 29
Ty) =24+ - x2 X = —. .
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The total entropy density today is (cf. Eq. (3.50) of the textbook)

2 2 . k: 3
59 = %g*S(TO)Tg’ ~ 23.41 K? x (h—3> ~ 1950 cm™® |, (3.64)
c
where I used the CMB temperature Tj, = 2.7255 K (cf. Appendix C.2.3 of the textbook)

3
and included the factor (%) to convert to SI units.

3. The effective number of relativistic species is also modified under supergravity. At Tfﬂ,
one must account for both the graviton (massless, since gravity is long range) and the

gravitincﬂ

A massless, spin-2 boson (the graviton) has

Geraviton — 2. (365)

A massive, spin—% Majorana fermion (the gravitino) hasﬂ

3
gy =2% S+ 1=4, (3.66)

However, the graviton decouples extremely early (typically at T' ~ Mp;) since gravity is
SO feebleﬂ7 and most likely before inflation itself. Its contribution is exponentially diluted
during inflation, so it can be neglected.

Thus,
7
945(Tr) = g8 (TR) + ¢%4(Tr) = 106.75 + g X 4=112.25 (3.67)
At Ty, one can simply use the result from Eq. (3.63)).
Then,
Qh° = P50 p2 (cf. Eq. (2.143) of the textbook)
Perit,0
A 9190 2 (cf. Eq. (2.142) and Eq. (3.32) of the textbook)
3Mp H
m N, g, 9+3(Ty)
99, .
= 5 J ?Tdec) h? (cf. Eq. (3.106) of the textbook)
3Mp H,
mgTRTg’ 9+3(Ty)
g*S<TdeC) 2
= h cf. Eq. (3.62
B (cf. Eq. (3.62))
Tr m 9+5(T))
~ 0.0659 g e 3.68
(109 GeV) (1 GGV) 955 (T1ee) ( )

4Assuming all other superpartners of SM particles are already decoupled after reheating.
°It is consistent for the graviton to be massless while the gravitino is massive, since SUSY is broken.

There is no extra factor of 2 since the gravitino is Majorana. In fact, gauge symmetry enforces all gauginos
to be Majorana in N' =1 SUSY.
"In fact, it is so feeble that the gravitino and graviton likely never entered thermal equilibrium after inflation.

45



Chapter 3. The Hot Big Bang

where I used Ty ~ 0.235 meV, Mp, ~ 2.435 x 10" GeV, and H, = 2.133 x 107** eVh
(cf. Appendix C.2.3 of the textbook).

The decoupling temperature of the gravitino is highly model dependent, and so is ¢,5(Tec)-
A few illustrative examples are:

- 0.0235 Tyee, > O(10° GeV)

2 R m

Qh% ~ 0.0659(109 Gev> (1 GZV) X < 0.0404 Tyeey 2 Tocopr . (3.69)
0.430  Theey < Thpn

3.7 Baryon asymmetry
. —3%71,: Dilution of the particle number density n(t) due to the expansion of the universe.

e —nn({owv): Annihilation with the antiparticle counterpart, with thermally averaged cross
section (ov), where v is the relative speed between the particle and its antiparticle in the
system.

e P(t): The source term that encapsulates any additional contributions to the number
density n(t).

1. Taking the CP conjugate of the Boltzmann equation for n(t), we have

dn_ —3gn — nilow) + P(L). (3.70)

dt

By CPT invariance of QFT, the thermally averaged cross section is unchanged, (Gv) =

(ov). For what follows, we also impose P(t) = P(t). Subtracting this from the Boltzmann
equation for n(t) gives

=0. (3.71)

_\ 3.
Hence, (n — n)a” is a constant.

2. Starting from the Boltzmann equation for n(t),

dn a _

%= _3an — nn{ov) + P(t)

1d(na®)

S~ "o+ P, (3.72)

where I used the assumption that, although there is no initial particle-antiparticle sym-
metry, whatever contributes to n(t) through the source term P(t) contributes equally to
7i(t), so (n — f)a® remains constant during the evolution and thus n = 7.
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At equilibrium, by definition the number density is at an extremum:

1 d(nd®
O = 3 (d ) = _ngq<gv>|t=teq + P(teq)~ (373)
a t
t=toq
Hence, the RHS vanishes at equilibrium:
P(teq) = ngq<o—v>‘t=teq' (374)

If, in addition, the source term P(t) is constant up to freeze-out (in general, not tru@,
and the thermally averaged cross section (ov) is also constant (typically temperature
dependent, though thermal effects often do not change final freeze-out results by orders
of magnitude), then the Boltzmann equation can be written as

1 d(na®)
3

p BT —(ov) [n® —nl ] |. (3.75)

3. The derivation matches the Riccati equation treatment in Section 3.2.2 of the textbook,
so we quote the result:

T
Y® ~ L 3.76
” (3.76)
3
where z; = Tﬂf and \ = ;I((Z)) = ”}I(%;). If decoupling occurs in the early radiation-

dominated era, the Hubble parameter from the Friedmann equation (cf. Eq. (3.55) of the
textbook) is

2
s m

H(m) ~ \/ﬁ g*(m)M—Pl.

4. A speed-up in the expansion rate H(m) corresponds to a smaller A\. Then, by Eq.
(cf. Fig. 3.10 of the textbook), the abundance of surviving massive particles is enhanced.
Physically, earlier decoupling (set by I' ~ H) leaves less time for annihilation with an-
tiparticles, resulting in a larger freeze-out abundance.

(3.77)

. ou € proton Ireeze-ou emperature 1S 1no nown a priori, we can assuime Ior
5. Although th ton f tt ture is not k iori f
protons at = > , an ermal protons are always non-relativistic rougnhout cosmic
tons that ”7?; 10, and th 1 prot lway lativistic throughout i

history. The reason is that QCD phase transition occurs at Tcoppr ~ 100 MeV, while
m,, ~ 1 GeV; before QCDPT the notion of a “proton” does not exist.

Since most dynamics occurs when the temperature is at least an order of magnitude below
the proton mass, the derivation in Section 3.2.2 requires minor adjustments. Suppose the
relevant scale is T' ~ Tcppr rather than T' ~ m,,. Redefine

T,
T = %, (3.78)

3
F(TQCDPT) o TQCDPT<UU>
H(TQCDPT) H(TQCDPT)
®0ne situation where this may hold is the case discussed above Eq. (3.98) in the textbook. It effectively

assumes that the sector coupled to the particle in question remains tightly coupled to the thermal plasma,
maintaining its equilibrium densities until the particle freezes out.

A

(3.79)
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Then Eq. (3.76]) applies with these modified definitions.
Today’s n, ¢ is (cf. Eq. (3.106) of the textbook)

9xs(1o)
n,o=Y>XTg—22"00 3.80
PO roo 9.s(Tqeppr) ( )
while today’s n., o is (cf. Eq. (3.24) of the textbook)
20(3
n,o= (2 )Tg’, (3.81)
T
SO
Tp0 _ 7T2 y g*S(TO)
nyo  203) " gus(Tqepper)
- 7 H(Tocorr)  Gus(Th) (3.82)

T
2((3) d TécDPT<UU> g*S(TQCDPT)
B e Ty 9.s(Tp)

2¢(3)v/90 Toeppr(00) Mp1 \/g.5(Toonpr) |

Plugging in (ov) ~ 100 GeV ™2, g,5(Tp) = 3.94, 9.5 (Tqeppr) = 17.25 (QCDPT occurs
well before neutrino decoupling), Tocppr =~ 100 MeV, Mp, = 2.435 x 10" GeV (cf. Ap-
pendix C.2.3 of the textbook), and assuming z; ~ 10 (justification: after chiral symmetry
breaking the strong sector is described by chiral perturbation theory with pions as force

carriers, so protons should decouple around the pion decoupling scale Ty ~ O(10 MeV)),
we find

00 15,30 x 10719 < gy & 6 x 1072°] . (3.83)

1,0

Hence, this cannot explain the present proton-to-photon ratio.

This failure indicates that at least one assumption in the derivation is invalid. Reviewing
the assumptions:

e P(t) = P(t): Thisis unlikely theissue. A violation of C and CP at T' ~ O(10 MeV)
large enough to account for an (9(109) effect would probably already have been
observed experimentally (e.g., the LHC operates at Eqy = 14 TeV)H.

e P(t) is a constant till proton freeze-out: This could fail in principle, but
quantitatively it is hard to generate the required (9(109) discrepancy. The source
must balance the annihilation term at equilibrium yet be several orders of magnitude
larger during proton decoupling. As above, new physics at this low scale having such
large effect would likely have been detected.

e (ov) is a constant: Same concern as above. Thermal effects are known and can
be computed in QFT; at these low scales they typically yield only O(1) corrections.

9Exceptions via clever or exotic model building do exist, typically with sectors extending beyond the SM.
Mesogenesis is one such example.
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3.8

1.

e x; ~ 10: From Eq. (3.76)), explaining an (9(109) discrepancy would require z; =

T 1
e
f

tremely late decoupling, Ty ~ O(0.01 eV), near the era of first star formation. With
protons non-relativistic, their equilibrium density would remain exponentially sup-
pressed until then, leaving the universe too dilute to support life.

Since the relevant scale cannot exceed Thcppr, this implies ex-

e |Initial particle-antiparticle symmetry: | As Arthur Conan Doyle put it, “When
you have eliminated all which s impossible, then whatever remains, however improb-
able, must be the truth.” Contrary to the assumption of initial symmetry, there must
be a built-in proton—antiproton asymmetry. Thus, baryogenesis must have occurred
before proton freeze-out.

Big Bang nucleosynthesis

The decoupling condition is
I‘(frdec) ~ H(Tdec)' (384)

Recall that the weak interaction rate is approximately (cf. Eq. (3.58) of the textbook)
I,(T) ~ G%T°, (3.85)

and the Hubble rate is (cf. Eq. (3.55) of the textbook)

2 2 3
T Gx T 47T Gg* 2
H=\—— =4 —=1T". 3.86
\/ 90 Mp, \/ 45 ( )

Approximating Ty ~ Ty, we have

3 5
T, = (4” Gf*) . (3.87)
145G

From Eq. (3.120) of the textbook,

(%) _ QT (3.88)

p

The later (earlier) decoupling occurs—that is, the lower (higher) the freeze-out tem-
perature Ty—the longer (shorter) the neutron-proton ratio tracks its equilibrium value,
leading to a smaller (larger) ratio. Since neutrons are either incorporated into deuterium
(and subsequently helium) or decay, fewer (more) neutrons implies less (more) deuterium
and thus a lower (higher) final helium abundance.

In summary: lower/higher Ty — smaller/larger neutron-proton ratio —
lower /higher final helium abundance.

49



Chapter 3. The Hot Big Bang

2. Recall Eq. (3.138) of the textbook,

T\ /2
(n—D> %n(—) o/t (3.89)
Tp mp
eq

Nucleation at T,,. occurs when this ratio becomes of order one, <Z—D> ~ 1, and is
P/ eq

therefore effectively independent of 7. Nevertheless, a larger (smaller) baryon-to-photon
ratio n shifts 7T}, higher (lower), meaning neutrons have less (more) time to decay. From
Eq. (3.133) of the textbook,

X, (t) = XPe ™, (3.90)
this leads to a larger (smaller) neutron abundance X,,, which allows more (less) deuterium
to form, and consequently more (less) final helium.

In summary: larger/smaller baryon-to-photon ratio n — more/less deuterium —
larger /smaller final helium abundance.

3. Recall Eq. (3.87) and Eq. (3.88]):
* .

[ Larger g, — higher Ty — higher final helium abundance.

[ ] GF:

[ Smaller G — higher Ty — higher final helium abundance.

o (7

[ Larger G — higher Ty — higher final helium abundance. ]

o ():

P

[ Larger @) — smaller (Z—”) at freeze-out — lower final helium abundance.

e 7,: From Eq. (3.133) of the textbook,
X,(t) = Xe ™ (3.91)

Shorter 7,, — smaller neutron abundance X,, — less deuterium formed —
lower final helium abundance.

o 1

[ As discussed in Problem larger p,, — higher final helium abundance.
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Chapter

4

Cosmological Inflation

Exercise 4.1

Simply taking derivative directly onto the Eq. (4.25) of the textbook:

d,
AN

Exercise 4.2

(14+3w)N
Q,m»e

sy (1 + 3w)e 3N
[(1 =) + Qk,ie(l—H Ak

(1+3w)Q (1 — Q)| .

4.1 Oscillating scalar field
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Appendix A

Elements of General Relativity

Exercise A.1

For p =0,
0,F" =9,F® + 0F" =0+ 9,E' =V -E=p=J". (A1)
For p =1,
0,F" = 0,F" + 9,F7 = —9,E' + ™9, B, = (V x B)' — ),E' = T, (A.2)
Thus,
o,F" = J"|. (A.3)

Exercise A.2

We adopt natural units (h = ¢ = 1), so that Eq. (A.28) from the textbook becomes
he  2whe 27

E=— = A4
A A A (A.4)

In the lab frame, where the photon is emitted, its four-momentum can be written as
P"=(E,p*,0,0), (A.5)

with E = p”* for a photon.

Now consider an observer moving with velocity v relative to the lab frame, in a direction
making an angle  with respect to the z-axis. Performing a Lorentz transformation, the photon
energy in the observer’s frame is

E' =~(E —vcosf p*) = yE(1 — vcos¥h). (A.6)
Hence, the photon wavelength in the observer’s frame transforms as

2 27y(1 —vcosb)

= X : (A.7)
or equivalently,
i’ B 1 V1= v? (A.8)
A (1 —wvcosh) 1—wcosh| '
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Derivation of Eq. (A.62) (Geodesic Equation)

To derive the geodesic equation, Eq. (A.62) of the textbook,

d2x , da® da?

B A9

i " ar dr (4.9)
from the extremization of the action, Eq. (A.61) of the textbook,
! dz* dz”

Slxt(N)] = — AN =9 ——— A10

R R e (A10)

We proceed as follows. Consider a small variation of the path: z" — z" + §z". The variation
of the action is

08 = S[at + d2"] — S[a"]

! 1 dz* dz” doz" dx” dz* dox”
0

I Ty T A
1 1 da? dx” dz" ddz”
- IN— (69, L Lo, ST COT
m/o 2L(g"”d>\d)\+g"”d>\ d)\>’

where L? = —gw%% = (3—1)2. Changing variables from \ to 7, we get

(A.11)

d/\ 1 w2 . VT2
5S:m/d7' (E) 5T (6g,,4" 3" L* + 2g,,,@" 63" L*)

1 . -V [6% d . 14
= m/d7'§ ((%gm,x“x ox® — QE(gWx“)ch )

1
— m/dT (§8agw,j3“j:”5xa — 0pg,, 2" " 0x" — gw,i'“é:v”>
(A.12)

1 1 1
=—-m / dr (gm,y'c‘“é:c” — §8agm,5c“i’”(5xa + §8agw5co‘jc“5x” + §8ﬂga,,33aj:“5x”)

1 1 1
— —m/dT {gm,j“ + (—5 L Gas T 58“‘%” + §8ng> j:o‘x'ﬁ} ox”

— m / drg,, <j§“ n rgﬁjc%ﬁ) g

where 7/ = %. Since this integral must vanish for arbitrary variations dz”, the integrand

must vanish identically, yielding the geodesic equation. Note also that the metric tensor g,
being a geometric property of the manifold, does not explicitly depend on the parameter \.

Exercise A.3

Show that the Christoffel symbol transforms as

0P 9 0™ " 0" 9x ox” (A.13)
= S (STHAT(STN), TS, 4+ 5%, (S7), 9,(S7H,"
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We begin from the definition of the Christoffel symbols in the primed coordinates:

1
I, = 59" (0agha + Olgha — Digi)

1

= 55%,8% " {(S‘l)x’&f (57,75 a9 ] + (57,70, [(STHX(S™)a"9n] (4 1)

o (S_l)ocfyav [(S_l)AU<S_1)Vngm7} }

Focusing on the terms where derivatives act only on the metric tensor (i.e., the tensorial
part), we find:

1
Tensorial part = Esﬂp‘saﬁgpﬁ { (Sil))\o(Sil)un(‘s’il)a’ygnma + (Sil)ljn(Sil>x\a(871>a’ygo'y,n

- (Sl)av(sl)f(sl)ﬂggw}

= §Slﬁpg,ﬂﬂ [(S—1>>\U(S—1)V775ggn%a + (S_1>VU(S_1))\J(5ggU%n - 5’&(5_1))\0(5_1)11”&777,7}
1 — o — — — (o — ag —
= §Sﬂp9pﬂ (S DS l)ungnﬁ,a+(s DS Jopn — (S DS l)ungan,ﬁ}
Z1N oy e 1
= Sup (S 1>/\ (S 1)1/7759/)/8(977,3,0 + gaﬁ,n - gan,ﬁ)
= Sup (S*1>/\U(S*1>V77an7

(A.15)

which confirms the expected transformation law for a rank (1,2) tensor.

The remaining terms, where derivatives act on the coordinate transformation matrices them-
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selves, form the non-tensorial part:

1
Non-tensorial part = §S“p5aggp6{(5_l))\080 [(S_I)U"(S_l)aﬂ Gy + (S_l),ﬂa77 [(S_l),\”(S_l)aw] Gor

= (571470, [(S7)7(57),"] 9""}

- %S“n [(STHN (ST, + (S5,
= S* (STH,P(S7),,”"

v,p

as required. In deriving this, we used the identity
_0a’ 92 %" B 0%z B
0427 02 0270 0rP0a”
as well as the fact that the metric tensor g, is symmetric.

Thus, Eq. (A.93) of the textbook is established:

S% (SIS Nay”

I, = S, (S™H,7(S7)," T8, + S, (S, (87,7 |- (A.18)

P
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Using the provided hint,

(S71),,"8% = —(S7)."S", (A.19)

P
and substituting the full transformation into Eq. (A.92) of the textbook:
VAVHE = VH+ T VY
= (Sil>x\08uuaavy + [(Sil))\asuu,o} VV
+ 8, (87N (S )T, S V4 S5 (ST, (871,18 Ve
= (Sil)AUSuV (ao_vl/ + anvn) + [(Sil))\US‘uu,a} VV - SHn(‘Sil))\p(Sil)unSVa,pva
= (Sil))\gsuuvavy + [(5*1)/\05%1/70} Vl/ - [(Sil))\pslua,p} Va
= (S—l)/\USHVVUVV )

(A.20)

as expected as a rank (1,1) tensor.

Exercise A.4

We begin by evaluating the covariant derivative of a scalar function defined as the contraction
f =W,V". Using the product rule, we have

Vof = VW) = 8,(W, V") = QW )V + W (9,17"). (A.21)

Alternatively, applying the definition of the covariant derivative directly to the contraction,
V.f=V,WV") = (VW )V +W,(V, V") = (VW )V '+ W, 0,V +T,,V"). (A.22)
Comparing the two expressions, we isolate the covariant derivative of the covector W, as follows:
(VW )V =0 W)V =W, I, V= (0,W, - W, )V (A.23)

Since this relation holds for arbitrary V", it follows that

v W, =9,W, -To,W,]|. (A.24)

Derivation of Eq. (A.111) (Riemann Tensor)

Consider two geodesics separated by an infinitesimal displacement vector B*. The relative
velocity between the geodesics is defined as

_ DB* dB*

VH = =U"V, V= + T80, U"B?, (A.25)
DT T
where U" = %. The corresponding relative acceleration is given by
DV* dv#
At = =U'V,Vt=—4T0,0"V". A.26
DT 12 d7_ + ov ( )
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Substituting Eq. (A.25)) into Eq. (A.26]), we find

2 pa « o
Aa:—DB2 _ 4 (dB +T4,U°B" | +T3,U” a5 + .U B
Dt dr \ dr dr ¢ (A.27)
B> dI§, ., du” o gdBY s '
=zt d—T”U BY+ TG, B+ 205, U° —— + T3, U TS U B".
Note that Jre
B dpa
d—T’Y — U Fﬁ'y,éa <A28)
and 5
AU
— = -1 UU, (A.29)

dr

where we have used the fact that U” satisfies the geodesic equation. Since (z*+ B®) must also
trace out a geodesic, we write out its geodesic equation:

W L 5 BEICH 7 ) (A.30)
and subtract the similar one for z“, yielding
iTB: = -T%,;B°U°U" — 2T’} ddiU = -T%:,B'U°U° - 2r67d£’yU (A.31)
Substituting this result into the expression for A%, we find
A = 1%, U°U’BY +1%,,U°U°B" — T3, T4 U°UB” + T3, IL.U°U’ B
— (D45, — T5,5 +TET5s — T, UPU° B (A.32)

= —R",;U°U’B".

In the local inertial frame of a freely falling observer, U" = (1,0,0,0). The relevant component
of the Riemann tensor is then R%y,. In the static weak-field limit, all time derivatives vanish,
so I'g, 0 = 0. Since the Christoffel symbols arise from derivatives of the metric perturbation

h,. (asn,, is constant), each I'g, is at least first order in h,,,, and we can neglect second-order
terms. Thus, the only surviving term for the Riemann tensor R, is I'Gy . Then,

dzBa « « ol «@ ¥ « % 1 [e%} A

d7-2 — A — —R O’YOB - _FOO,'YB - _FOO,iB - 81 577 h‘OO,j B . (A33)

250 2 . .
Note dd32 =0, and ddB] = 30, . hoyB' = —B'9,§’®, which corresponds precisely to the New-
tonian limit of the geodesic dev1at10n equation.

Proof of Riemann Tensor Identities

d Ry,upa' = _Ruupcr:

First, note that

R,uupg = g,u)\R/\upO' = gu)\(rr//\ap Fl//\p a_’_r)\éria F)\(;F ) F,uuo'p Fuup,c_f—rup)\rz)/\o'_]?(/fg/\rl)/\)pv
34
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where we introduced the shorthand notation

1 1
F,UJ/O’ = gﬂ)\Fl)/\J = gu)\ig/\é(gaé,u + 9vse — guo,5) = §<gau,u + guu,a - gua,u)‘ <A35)

Now, consider Riemann normal coordinates, in which Fgﬁ(p) = 0 at a point p. In these
coordinates, the Riemann tensor reduces to

Rul/po = F,ul/a,p - Fuup,a
1
= §<gau,up + guu,ap - gucf,,up - gpu,l/o‘ - gup,,pa + gup,,ucf) (A36)
1

2 (gau,up - gVO',/Lp - gp,u,l/a + gup,uo‘)a

which is antisymmetric under the exchange p <+ v. Therefore, in Riemann normal coor-
dinates,

R,uz/pcf = _Ryypa' (A37)
Since this is a tensor identity, it holds in all coordinate systems.
Rpe = —Ryuop:
Eq. (A.36)) is also antisymmetric under interchange of p <+ o, and hence

R,uupa = _R,uz/op' (ASS)

Since this is a tensor identity, it holds in all coordinate systems.

R =R

nvpo popv:

Eq. (A.36)) is symmetric under simultaneous swaps i <> p and v <> o, so we also have

Ruvpe = Ryop (A.39)
Since this is a tensor identity, it holds in all coordinate systems.
Rypoe + Rypor + Ryorp = 0:
Again using Eq. (A.36)), we compute
1
R;wpa + R,upo'l/ + R,ucrup = §(gau,up - gua,/,Lp - gp,u,lzo' + gup,,ucr
+ Guppo = Govuo = Gop.pr t Jpouw (A.40)
+ gp,u,m/ - gap,uu - gu,u,ap + gau,up)
= 0.
Therefore,
Ryypo + Rypor + Rypp = 0. (A.41)

Since this is a tensor identity, it holds in all coordinate systems.
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e Bianchi identity:

In Riemann normal coordinates, where the Christoffel symbols vanish and covariant
derivatives reduce to partial derivatives, we again use Eq. (A.36) to obtain

1
R/.wpa)\ =+ R)\,u,pa,u =+ Rl/)\pa,,u, = §<ga,u,,l/p)\ - gua,up)\ - gp,u,ua)\ + gup,uo—)\
+ go)\,,upz/ - g,uo,)\py - gp)\,ucn/ + g,up,)\cn/ <A42)
+ go’u,)\p,u - g)\a,upu - gpu,)\a,u + gAp,VUu)

Since this is a tensor equation, the result holds in all coordinate systems. Therefore, we
have the Bianchi identity:

V)\R/.Lupa —|— VVRA/.LpU + V#Rl,)\pa - O (A43)
Proof of V,g,, =0
gul/;a = guu,a - gugw/ - gugau
1, L o
= Guveo — 59 g (g,u)\,a + Gorp — g,ucr,)\) Goav — 59 A (gl/)\,a + Jorwy — gua)\) Gop
2 : (A.44)
= guu,a - 5 (g,uu,g + gay,u - g,ua,u) - 5 (gu,u,a + ga,u,u - gyo’,,u)
=0.
7
Proof of V'R, # 0
The Ricci tensor is defined as
Rw/ = R)\u/\u' <A45)

From the Bianchi identity of the Riemann tensor,

v)\R,w/po + vuRkupa + VMRV)\pO' = 07
gU)\gup (V)\R,prcr + VZIR/\/J,pG' + V;LRU)\/)U) = Oa
V°R,, — "'V, Ry, + V’R,, =0,

1
V'R, = 5V, R (A.46)
where R = ¢"" R, is the Ricci scalar.
Exercise A.5
g"OR,, = g" <5rfw, s — 00y, + 6TA, L0, + 13,01, — 617, — rﬁkérﬁp) . (A7)
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Suppose we work in Riemann normal

coordinates at a point p, so that I, (p) = 0. In this

coordinate system, the variation becomes

g"oR,,

= g (010 — 0T )

= " 0T, — "0}y, (A.48)
= 0, (g™ 0Th, — g"oT)))

—9,X",

where on the second line, we relabel the dummy indices in the first term as u — p, and in the

second term as p <+ v. On the third lin

e, we again relabel the dummy index A — p in the first

term. We also used the fact that in normal coordinates, I}, (p) = 0 implies g}/ =0 = ¢ =0

at the point p. Finally, when we replace

the partial derivative with the covariant derivative, this

becomes a tensor identity, and thus it holds in all coordinate systems. Therefore, we conclude:

9

where

X" = g™ oTh,

Proof of d/—g = —

1
2

MSR,, = VX", (A.49)

— g" o). (A.50)

v—99,.,09""

(A.51)
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Proof that the Minkowski metric is a solution to the Ein-
stein equations

From Eq. (A.156) of the textbook, the Minkowski metric is given by
-1
G = 1 (A.52)
1

Since all components of the metric tensor are constants, all derivatives vanish, implying that
the Christoffel symbols, which depend on derivatives of the metric, vanish identically:

I, =0, (A.53)

As a result, the Riemann curvature tensor, which depends on derivatives and products of the
Christoffel symbols, also vanishes. Therefore, the Ricci tensor and the Ricci scalar vanish as
well:

R, =0, R=0. (A.54)
Consequently, the Einstein tensor reduces to
1
ij = RNV - §guuR =0. <A55)

Hence, the Minkowski metric is indeed a solution of the vacuum (7),, = 0) Einstein equations.

Proof that the Schwarzschild metric is a solution to Ein-
stein equations

From Eq. (A.157) of the textbook, the Schwarzschild metric is given by
(1 2aM)

oy
gul/ = " T2 . <A56)
r? sin’ 6
Since the metric is diagonal, any Christoffel symbol I'* 5 with 1 # o # [ vanishes identically.
The non-vanishing Christoffel symbols are:

GM
Fir = Ff’t = _F:r SN —
2GMr —r
. GM(=2GM +r)
Ftt = 3 )
T
FZQ = QGM -,

he = (2GM —1)sin® 0, (A.57)

1
0 _ 0 _ o _ o _
FT@ - FGT - F7~¢ - F(br - ;7

F% = —cosfsind,
FZ)¢ = Fie = cot 6.
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By spherical symmetry, components of the Ricci tensor that mix angular and radial or time
coordinates, which imply a preferred angular direction, vanish:

Rt@ = th) = Rr@ = er) = RGd) = 07 <A58)

along with their symmetric counterparts.
Moreover, since no component of the metric depends on time, the spacetime exhibits time
translation invariance. Hence,
R,=R, =0. (A.59)
The potentially non-zero components of the Ricci tensor are therefore R, R,,, Ry, and
R,s. We compute them explicitly:

* Ry:
Rtt = Ffe\t,A - Ft)\)\,t + Fiprtpt - Ftp/\]‘—‘i\p
=Ty + (04 + T, + g, + T9, )05 — T4 Ty — TRI,
= + (207, + T, + T3, (A.60)
M — M —
26N (30_"“) _aaM <3G_r)
T T
— 0’
L4 R’I”I':
Rrr - Fv)'\r,)\ - Fi\)\,'r + Fﬁprgr - Ff)\ri\p
= F:r,r - Fit,r - F:’I‘,T’ - Ff@,r - quﬁ,r + (Fir + F:T + Fgr + Fd)r)F:r
- (thﬂt)Q - (F:r)z - (F%)Q - (Ff¢)2 , (A.61)
GM — 2GM 20GM
:_QGMQ T2+2 _2< )2
r*(2GM —r)"  r(2GM —r) r°(2GM —r)
— (),
® Ryy:

A A A P P A
Rgg = Tpx — Tong + 13,09 — Tala,

- Fge’r N ngﬁﬂ + (Fir + F:T + FgT + Fd)r)FgG - gergr - Fgr g@ - (ngﬁ)?
2 (A.62)
o

=—1+ (2GM —r) — cot*#

2
+-(2GM —
sin” 0 7’( ")
—0,
o Ry

A A A P P A
Ryp = Tgon —Tone +Taplss — Tonl s,

=Ty, + Do+ (D0 + Thp + T4, + TO )Ty + T T%, — T T — T4,T0 — T0 Thy — T5,T0,

=Ty + Togo — ToolGs
= —sin?6 — cos® f + sin® @ + cot H cos O sin 6
=0.
(A.63)
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Since the Ricci tensor R, is symmetric, it has 10 independent components. We have
explicitly computed all independent components and verified that each vanishes. Therefore,
the Ricci scalar also vanishes:

R=4¢"R,, =0. (A.64)
Thus, the Schwarzschild metric indeed satisfies the vacuum (7, = 0) Einstein field equa-
tions:
1
G, =R, — §gWR = 0. (A.65)

Proof that the de Sitter metric is a solution to Einstein
equations

From Eq. (A.158) of the textbook, the de Sitter metric is given by
T2
~(1-%)
7"2 -1
G = <1 - ?) . (A.66)
r? sin® 0

Since the metric is diagonal, any Christoffel symbol Fgﬁ with p # « # [ vanishes identically.
The non-vanishing Christoffel symbols are:

t t r r
Ly =T = -1 = 2 _ R%
. —rR?
Ftt = T7
3
Fg@ =—r+ ?7
, r(r* — R*)sin” 0 (A.67)
¢¢ = R2 9

1
6 _ 10 _péd ¢ _
F'r@ - FGT - Frqs - Fd)'r - ;a

Fg,¢, = —cosfsind,
F& = Fﬁe = cot 0.

Again, like the case of the Schwarzschild metric, spherical symmetry and time translation
invariance imply:

Rtr - Rt@ - th) — Rr9 — Rr¢ - R9¢ — 0, (A68)

as well as their symmetric counterparts. The only potentially non-vanishing components of
the Ricci tensor are Ry, R,.., Rgy, and R, The structure of the computation mirrors the
Schwarzschild case, as both metrics are time-independent, spherically symmetric, diagonal,
and radially dependent.
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[ ] Rtt:
Ry =Ty, — i, + 3,05 — DL,
=T}, + (T4 + T, + 19, + TO )Ty, — T, T, — TLT,
=T, + (207, + T, + T5)I,
_ 3r° — R’ n 2r 2\ r* —rR? (A.69)
- R P —R? 7 R*
3(7‘2 - R2)
TR
L4 R”"":
Rrr = F'r)“\r,)\ - Fi\)\,r + Fﬁprgr - Ff)\rv)“\p
- F:r,r - Ff’t,r - F:’r,r - Ffe,r - Pfqb,r + (Fir + F:r + Pgr + Fd)r)rz:r
— ([%,)? = (I7,)° = (T79)* — (T'%,)° A0
B 1 n 27 n 2 —r 5 r 2 (A.70)
= 2 _R? (r2 _ R2)2 r\ 2 _R? 2 _R?
3
- T2 RY
* Ryy:
Rgg = Tg95 — Torg + TN, 000 — T4, 15,
=Th, — Toyo + (T + Thp + 19, + 19,0 — ToeT5, — 19, T — (T5,)?
3 1
= —1+L2+—2 —C0t29 <A71)
R sin“ 6
32
“F
o Ryy:
A A A A
Ryp =T4ox — Tong + Tl — T53T5,
r 9 b 10
= Lo + Lo — Lyl ve
3r?sin? 0
= % —sin?#0 — cos? 0 + sin? 0 + cot O cos f sin O (A.72)
3r? sin’ 6
v
The Ricci scalar R is then
3 3 3 3 12
v _tt rr 00 ol — —
R—g“ Rm,—g Rtt+g Rrr—l—g R99+g R¢¢—P+?+?+F—? <A73)

The Einstein tensor G, is hence also diagonal, and its non-vanishing components are:
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[ ] Gtt:
_ 1 3’ =R 6 (r"—R 3(r* — R?) r* — R?
Gy = Ry — EgttR = T - ? T = joe =A 72 = —Agy,
(A.74)
L G'I"'I’"
1 3 6 R’ 3 R’
= 5 = - = =A =—A
Grr Rrr QQMR TQ — R2 RQ (R2 — 7"2) 7’2 — R2 TQ _ R2 Grrs
(A.75)
[ Ggg
1 37"2 6 2 3T2 2
= — = = — - —=r"=—— =Ar-=-A A.
Gog = Ryo 2909R R RQT R r 960> (A.76)
® G¢¢:
1 3r’sin®f 6 ) 3r? sin® 0 ,
Gpp = Ryp — §g¢¢R =~ ?Tz sin®§ = T Ar?sin? 0 = —AGys,
(A.77)
where we used the definition R* = 3/A.
Hence,
G =—Ng. (A.78)
Therefore, the de Sitter metric indeed solves the vacuum (7, = 0) Einstein equation with a

positive cosmological constant A > 0:

Proof that the anti-de Sitter metric is a solution to Ein-
stein equations
The calculation is identical to the case of the de Sitter metric. One can simply perform the

replacement R® — —R?. With this substitution, all intermediate steps and final expressions
carry over directly, and the entire derivation remains unchanged.
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