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Chapter 1

Introduction

1.1

1.
VEarth

VMoon

≈ 50. (1.1)

Thus, if the Earth were scaled to the size of a basketball, the Moon would correspond
roughly to a tennis ball.

rMoon-Earth

rEarth
≈ 60. (1.2)

The Earth–Moon distance would be comparable to the distance from the three-point line
to the basket.

2. Taking a peppercorn of diameter dpeppercorn ∼ 5 mm to represent Earth, the scaled
Sun–Earth distance (1 AU) becomes

rscaled Sun-Earth =
dpeppercorn
dEarth

× rSun-Earth ∼ 5 mm

12742.018 km
× 1 AU ≈ 60 m . (1.3)

The average orbital radius of Neptune is DSun-Neptune ≈ 30.1 AU, which under the same
scaling becomes

rscaled Sun-Neptune =
dpeppercorn
dEarth

×rSun-Neptune ∼
5 mm

12742.018 km
×30.2 AU ≈ 1800 m . (1.4)

3. We take the average orbital radius of Neptune as a proxy for the Solar System’s radius.1

For reference, a standard international basketball court measures 28 m × 15 m. Under
this scaling, the Solar System would shrink to

dscaled Solar System =
dSolar System

dSolar Neighborhood

× lbasketball court ≈
60.4 AU

65 ly
× 28 m ≈ 4.1× 10−4 m .

(1.5)

1This, of course, strongly underestimates the size of the Solar System, and its boundary is not even well
defined. Depending on whether one considers the Oort Cloud, heliopause, heliosphere, or Kuiper Belt, the result
would vary significantly.

2



Chapter 1. Introduction

4.

dscaled Solar Neighborhood =
dSolar Neighborhood

dMilky Way

× lbasketball court ≈
65 lys

105 lys
× 28 m ≈ 0.018 m .

(1.6)

5.

dscaled Milky Way =
dMilky Way

dLocal Group

× lbasketball court ≈
105 lys

107 lys
× 28 m ≈ 0.28 m . (1.7)

6.

dscaled Local Group =
dLocal Group

dLocal Supercluster
×lbasketball court ≈

107 lys

5× 108 lys
×28 m ≈ 0.56 m . (1.8)

7.

dscaled Local Supercluster =
dLocal Supercluster
dobservable universe

×lbasketball court ≈
5× 108 lys

2× 46.5× 109 lys
×28 m ≈ 0.15 m .

(1.9)

1.2

1.
tH0

≡ H−1
0 = 70−1 km−1 s Mpc ≈ 4.4× 1017 s . (1.10)

2.
dH0

≡ cH−1
0 = ctH0

≈ 1.3× 1026 m . (1.11)

Because the universe is expanding, this is not the physical radius of the ob-
servable universe, but only about one-third of it.

3.

ρ0 =
3H2

0

8πG
≈ 9.2× 10−27 kg m−3 . (1.12)

This is roughly 10−29 times smaller than that of water, ρw ≈ 1.0× 103 kg m−3.

4.

NH,universe =
muniverse

mH

=
ρ0Vuniverse

mH

∼ ρ0
4

3
πd3H0

1

mH

≈ 1080 . (1.13)

The molar mass of hydrogen is 1 g/mol, and that of oxygen is 16 g/mol. Thus, the

hydrogen mass fraction in water is 2×1 g/mol
16 g/mol+2×1 g/mol

= 1
9
. Taking the average adult brain

mass mbrain ≈ 1.4 kg and assuming it consists mostly of water,

NH,brain =
mbrain × 1

9

mH

≈ 1026, (1.14)

which is only 10−54 of the total hydrogen atoms in the universe.
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Chapter 1. Introduction

5.

lmin =
ℏc

Emax

≈ 2.0× 10−19 m . (1.15)

This scale is about 10−45 times smaller than the Hubble distance dH0
.
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Chapter 2

The Expanding Universe

Exercise 2.1

The Euler-Lagrange equation tells us

d

dt

(
∂L

∂q̇

)
=

∂L

∂q
, (2.1)

where q is a generalized coordinate. Applying to the Lagrangian of the free particle

L =
m

2

(
ṙ2 + r2ϕ̇2

)
, (2.2)

gives us

d

dt

(
∂L

∂ṙ

)
=

∂L

∂r

r̈ = rϕ̇2,

(2.3)

and

d

dt

(
∂L

∂ϕ̇

)
=

∂L

∂ϕ

d

dt

(
mr2ϕ̇

)
= 0

ϕ̈ = −2

r
ṙϕ̇.

(2.4)

Exercise 2.2

From the FRW metric,

ds2 = −c2dt2 + a2(t)γijdx
idxj. (2.5)

Since g00 = −c is a constant and gi0 = g0i = 0, any Christoffel symbols with at least two time
indices vanish, i.e. Γµ

00 = Γ0
0β = 0.
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Chapter 2. The Expanding Universe

Γ0
ij =

1

2
g0λ
(
∂igjλ + ∂jgiλ − ∂λgij

)
=

1

2
g00
(
∂igj0 + ∂jgi0 − ∂0gij

)
=

1

2
∂0gij

=
1

2
∂0
(
a2
)
γij

= c−1aȧγij.

(2.6)

Γi
0j =

1

2
giλ
(
∂0gjλ + ∂jg0λ − ∂λg0j

)
=

1

2
gik
(
∂0gjk

)
=

1

2
a−2γik∂0

(
a2
)
γjk

= c−1 ȧ

a
δij,

(2.7)

where we have used the fact that the metric is symmetric such that γij = γji.

Γi
jk =

1

2
giλ
(
∂jgkλ + ∂kgjλ − ∂λgjk

)
=

1

2
gil
(
∂jgkl + ∂kgjl − ∂lgjk

)
=

1

2
γil
(
∂jγkl + ∂kγjl − ∂lγjk

)
.

(2.8)

Exercise 2.3

Starting from Eq. (2.55) of the textbook,

gµνP
µP ν = −m2c2

g00P
0P 0 + gijP

iP j = −m2c2

−(P 0)2 + p2 = −m2c2.

(2.9)

Taking time derivative on both sides:

−P 0dP
0

dt
+ p

dp

dt
= 0. (2.10)

Now, using the geodesic equation for P 0 (Eq. (2.52) of the textbook), we shall get

p
dp

dt
= P 0dP

0

dt
=

E

c2
dE

dt
= −aȧγijP

iP j = −ȧp2, (2.11)

6



Chapter 2. The Expanding Universe

or
1

p

dp

dt
= − ȧ

a
. (2.12)

Thus, p ∝ a−1.
To derive Eq. (2.56) of the textbook, we notice that from the metric,

c2dτ 2 = c2dt2 − gijdx
idxj, (2.13)

or (
dτ

dt

)2

= 1− v2

c2
. (2.14)

Then, since

p2 ≡ gijP
iP j = gijm

2dx
i

dτ

dxj

dτ
= gijm

2

(
dt

dτ

)2
dxi

dt

dxj

dt
= m2v2

(
1− v2

c2

)−1

, (2.15)

we have
p =

mv√
1− v2/c2

. (2.16)

Exercise 2.4

From U = (ρc2)V , we know that

−PdV = dU = dρc2V + ρc2dV (2.17)

Dividing both sides by dt,
−PV̇ = ρ̇c2V + ρc2V̇ , (2.18)

or

ρ̇+
V̇

V

(
ρ+

P

c2

)
= 0. (2.19)

On the other hand, we know that since V ∝ a3,

V̇

V
=

1

a3
d(a3)

dt
= 3

ȧ

a
. (2.20)

Plugging this back into Eq. (2.19), we arrive at

ρ̇+ 3
ȧ

a

(
ρ+

P

c2

)
= 0. (2.21)

Exercise 2.5

• First noticing that since ρma
3 = 1

2
ρeqa

3
eq is a constant, and similarly ρra

4 = 1
2
ρeqa

4
eq, we

can infer that nowadays (a = 1) we have Ωmaeq = Ωmy
−1
0 = Ωr, where we have defined

y0 ≡ y(z = 0) = 1 + zeq ≡ a−1
eq .
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Chapter 2. The Expanding Universe

Starting from the Eq. (2.194) of the textbook with ΩΛ = Ωk = 0, using y ≡ 1+zeq
1+z

= a
aeq

=

y0a or da = y−1
0 dy, we have

t =
1

H0

∫ a

0

da′√
Ωra

′−2 + Ωma
′−1

=
1

H0

∫ y

0

y′dy′

y
3/2
0

√
Ωm

√
1 + y′

=
1

H0y
3/2
0

√
Ωm

∫ y

0

dy′
[√

1 + y′ − 1√
1 + y′

]

=
1

H0y
3/2
0

√
Ωm

[
4

3
+

2

3
(1 + y)3/2 − 2(1 + y)1/2

]
.

(2.22)

Plugging the observed values H0 = 67.74 km s−1Mpc−1, y0 = 1 + zeq = 3401, and
Ωm = 0.3153, we can calculate the prefactor to be ≈ 130000 yrs, and thus

t = 130000 yrs

[
4

3
+

2

3
(1 + y)3/2 − 2(1 + y)1/2

]
. (2.23)

– At z = zeq, y = 1, and thus, the matter-radiation equality happens at t ≈ 50000 yrs.

– At z = zrec = 1100, y = 3401
1101

, and thus, the recombination happens at t ≈ 360000
yrs.

• Similarly, setting instead Ωr = Ωk = 0, Ωm = a3mΛΩΛ = y−3
0 ΩΛ and starting from the Eq.

(2.194) of the textbook again, we get

t =
1

H0

∫ a

0

da′√
Ωma

′−1 + ΩΛa
′2

=
1

H0

√
ΩΛ

∫ y

0

√
y′dy′√
1 + y′3

=
2

3H0

√
ΩΛ

sinh−1(y3/2).

(2.24)

Plugging the observed values H0 = 67.74 km s−1Mpc−1, y0 = 1 + zmΛ = 1.3, and ΩΛ =
0.6847 give us the prefactor to be ≈ 11.5 Gyrs. Thus, we have

t = 11.5 Gyrs× sinh−1(y3/2). (2.25)

– At z = zmΛ, y = 1, and thus, the matter-dark energy equality happens at t ≈ 10.1
Gyrs.

– At z = z0 = 0, y = 1+zmΛ = 1.3, and thus, the age of the universe is about t ≈ 13.6
Gyrs.

2.1 Robertson-Walker metric

1. • Why g00 = −1?
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Chapter 2. The Expanding Universe

Homogeneity implies that g00 can only be a function of time with no space depen-
dence. Now suppose one has a non-trivial g00, one can always do a redefinition of
the time coordinate dt′ ≡

√
−g00dt to absorb the non-trivial g00 so one can always

rescale to set g00 = −1.

• Why g0i = 0?

Isotropy requires the mean values of any three-vectors to vanish in the comoving
frame for there is no preferred direction, and thus one must have g0i = 0.

• Why gij = a2(t)γij(x⃗)?

Isotropy around a point x = 0 constrains the mean values of any three-tensor to be
proportional to δij. Homogeneity requires the proportionality coefficient to be only
a function of time. Also, as the proportionality is unaffected by transformation of
the spatial coordinates, one can always separate the gij into a time-dependent part
and a spatial-dependent part. Since there is nothing special about the point x = 0
by homogeneity, the factorization must hold everywhere.

2. • Isotropy implies a rotational invariance, under which the radial component r is
preserved under a rotation transformation. This implies grr can only be a function of
radial coordinate alone: grr = A(r). As it never runs to negative value by definition,
one can choose

grr = A(r) ≡ e2α(r/R0) (2.26)

for some function α(r/R0). The R0 is just some arbitrary constant carrying the a
dimension of [length] to make the metric dimensionally consistent.

Also, there can never be non-vanishing mixing terms between the radial components
and angular components such as grθ and grϕ. The rotational invariance also implies
grθ and grϕ can only be functions of radial component r only. However, if one does
a reflection redefinition on the angular angles (e.g., θ → π − θ or ϕ → −ϕ), which
leaves r unchanged, but drdθ or drdϕ picks a sign change under such transformation,
and one concludes

grθ(r)drdθ = −grθ(r)drdθ = 0, (2.27)

and
grϕ(r)drdϕ = −grϕ(r)drdϕ = 0. (2.28)

Moreover, the rotational invariance also implies the angular coordinates mix in such
a way that the standard metric on the sphere dΩ2 ≡ dθ2+sin2 θdϕ2 is preserved with
a prefactor that can only be a function of radial component r only. More specifically,

gθθ(r, θ, ϕ)dθ
2 + 2gθϕ(r, θ, ϕ)dθdϕ+ gϕϕ(r, θ, ϕ)dϕ

2 = B(r)dΩ2. (2.29)

Now, the rotational invariance also says the metric should not change under a linear
shift on the azimuthal angle ϕ → ϕ+α for an arbitrary constant α. This immediately
implies gθθ, gθϕ, and gϕϕ can not have any ϕ dependence. A reflection arguments
again implies the cross term should vanish:

gθϕ(r, θ)dθdϕ = −gθϕ(r, θ)dθdϕ = 0. (2.30)

Finally, for any fixed r, the angular part of the metric needs to be isomorphic to a
2-sphere with radius r. This fixes B(r) = r2 or otherwise, one can not reproduce

9



Chapter 2. The Expanding Universe

the correct physical circumference. Therefore, the most general spatial metric takes
the form

dℓ2 ≡ e2α(r/R0)dr2 + r2dΩ2. (2.31)

• Notice that we’re calculating a 3-scalar, which is invariant under any spacial transfor-
mations. Thus, we can choose the coordinate with θ = π

2
, which shall significantly

simplify the calculation. Also, since the metric has no off-diagonal elements, any
Christoffel symbols that has the form Γi

jk with i ̸= j ̸= k must vanish. In other
words, there must be at least two repeated indices. The non-vanishing Christoffel
symbols are

Γr
rr =

1

2
grr(∂rgrr) = α′, (2.32)

Γr
θθ =

1

2
grr(−∂rgθθ) = −re−2α, (2.33)

Γr
ϕϕ =

1

2
grr(−∂rgϕϕ) = −r sin2 θe−2α = −re−2α, (2.34)

Γθ
θr =

1

2
gθθ(∂rgθθ) =

1

r
, (2.35)

Γϕ
ϕr =

1

2
gϕϕ(∂rgϕϕ) =

1

2

1

r2 sin2 θ
(2r sin2 θ) =

1

r
, (2.36)

or are related to these by symmetry. There are also

Γϕ
ϕθ =

1

2
gϕϕ(∂θgϕϕ) = cot θ, (2.37)

Γθ
ϕϕ =

1

2
gθθ(−∂θgϕϕ) = − sin θ cos θ, (2.38)

whose partial derivative w.r.t θ does not vanish:

∂θΓ
ϕ
ϕθ = − csc2 θ = −1, (2.39)

∂θΓ
θ
ϕϕ = − cos2 θ + sin2 θ = 1. (2.40)

Again, since the metric tensor is diagonal, to calculate the scalar curvature, the only
relevant Ricci tensors are Rrr, Rθθ, and Rϕϕ.

Rrr = ∂iΓ
i
rr − ∂rΓ

i
ri + Γi

ijΓ
j
rr − Γi

rjΓ
j
ri

= ∂rΓ
r
rr − ∂rΓ

r
rr − ∂rΓ

θ
rθ − ∂rΓ

ϕ
rϕ + (Γr

rr)
2 + Γθ

θrΓ
r
rr + Γϕ

ϕrΓ
r
rr − (Γr

rr)
2 − (Γθ

rθ)
2 − (Γϕ

rϕ)
2

=
2

r2
+ 2

α′

r
− 2

r2

= 2
α′

r
,

(2.41)

Rθθ = ∂iΓ
i
θθ − ∂θΓ

i
θi + Γi

ijΓ
j
θθ − Γi

θjΓ
j
θi

= ∂rΓ
r
θθ − ∂θΓ

ϕ
θϕ + Γr

rrΓ
r
θθ + Γθ

θrΓ
r
θθ + Γϕ

ϕrΓ
r
θθ − 2Γθ

θrΓ
r
θθ

= −∂r(re
−2α) + 1− rα′e−2α − 2e−2α + 2e−2α

= −e−2α + rα′e−2α + 1,

(2.42)

10



Chapter 2. The Expanding Universe

and

Rϕϕ = ∂iΓ
i
ϕϕ − ∂ϕΓ

i
ϕi + Γi

ijΓ
j
ϕϕ − Γi

ϕjΓ
j
ϕi

= ∂rΓ
r
ϕϕ + ∂θΓ

θ
ϕϕ + Γr

rrΓ
r
ϕϕ + Γθ

θrΓ
r
ϕϕ + Γϕ

ϕrΓ
r
ϕϕ − 2Γϕ

ϕrΓ
r
ϕϕ

= −e−2α + rα′e−2α + 1.

(2.43)

Then,

R(3) = grrRrr + gθθRθθ + gϕϕRϕϕ

= e−2α

(
2
α′

r

)
+

2

r2
(−e−2α + rα′e−2α + 1)

=
2

r2
[
rα′e−2α − e−2α + rα′e−2α + 1

]
=

2

r2

[
1− d

dr

(
re−2α(r/R0)

)]
.

(2.44)

3. Requiring the scalar curvature to be a constant, say R(3) = A:

A = R(3) =
2

r2

[
1− d

dr

(
re−2α(r/R0)

)]
d

dr

(
re−2α(r/R0)

)
= 1− Ar2

2

re−2α(r/R0) +B = r − Ar3

6

e−2α(r/Ro) = 1− Ar2

6
− B

r

(2.45)

Recognizing A
6
= k

R
2
0

and B = bR0 shall give us

e2α(r/R0) =
1

1− k r
2

R
2
0

− b
(

r
R0

)−1 . (2.46)

As b
(

r
R0

)
is divergent at r = 0, the local flatness at this point requires b = 0 and hence,

ds2 = −dt2 + a2(t)

[
dr2

1− kr2/R2
0

+ r2dΩ2

]
. (2.47)

The k = −1, 0, 1 just corresponds to hyperbolic, flat, and spherical space, respectively. R0

simply tells the spatial curvature.

4.

∂ρ

∂t
= ȧr =

ȧ

a
ρ, (2.48)

∂ρ

∂r
= a, (2.49)

∂T

∂t
= 1 +

1

2
äar2 +

1

2
ȧ2r2 = 1 +

ä

2a
ρ2 +

ȧ2

2a2
ρ2, (2.50)

∂T

∂r
= ȧar = ȧρ. (2.51)

11



Chapter 2. The Expanding Universe

The Jacobian is given by

J =

(
∂T
∂t

∂T
∂r

∂ρ
∂t

∂ρ
∂r

)
. (2.52)

Its determinant is given by

det J =
∂T

∂t

∂ρ

∂r
− ∂T

∂r

∂ρ

∂t

=

(
a+

ä

2
ρ2 +

ȧ2

2a
ρ2
)
− ȧ2

a
ρ2

=

(
a+

ä

2
ρ2 − ȧ2

2a
ρ2
)
.

(2.53)

Inverting the Jacobian give us

J−1 ≡
( ∂t

∂T
∂t
∂ρ

∂r
∂T

∂r
∂ρ

)
=

1

det J

(
∂ρ
∂r

−∂T
∂r

−∂ρ
∂t

∂T
∂t

)
. (2.54)

We can then read off the elements:

∂t

∂T
=

1

det J

∂ρ

∂r
=

(
a+

ä

2
ρ2 − ȧ2

2a
ρ2
)−1

a ≈
(
1− ä

2a
ρ2 +

ȧ2

2a2
ρ2
)
, (2.55)

∂t

∂ρ
= − 1

det J

∂T

∂r
= −

(
a+

ä

2
ρ2 − ȧ2

2a
ρ2
)−1

ȧρ ≈ − ȧ

a
ρ

(
1− ä

2a
ρ2 +

ȧ2

2a2
ρ2
)
, (2.56)

∂r

∂T
= − 1

det J

∂ρ

∂t
= −

(
a+

ä

2
ρ2 − ȧ2

2a
ρ2
)−1

ȧ

a
ρ ≈ − ȧ

a2
ρ

(
1− ä

2a
ρ2 +

ȧ2

2a2
ρ2
)
, (2.57)

∂r

∂ρ
=

1

det J

∂T

∂t
=

(
a+

ä

2
ρ2 − ȧ2

2a
ρ2
)−1(

1 +
ä

2a
ρ2 +

ȧ2

2a2
ρ2
)

≈ 1

a

(
1 +

ȧ2

a2
ρ2
)
. (2.58)

Thus,

dt2 =

(
1− ä

2a
ρ2 +

ȧ2

2a2
ρ2
)2

dT 2 +
ȧ2

a2
ρ2
(
1− ä

2a
ρ2 +

ȧ2

2a2
ρ2
)2

dρ2

− 2
ȧ

a
ρ

(
1− ä

2a
ρ2 +

ȧ2

2a2
ρ2
)2

dρdT

≈
(
1− ä

a
ρ2 +

ȧ2

a2
ρ2
)
dT 2 +

ȧ2

a2
ρ2dρ2 − 2

ȧ

a
ρdρdT,

(2.59)

and

dr2 =
ȧ2

a4
ρ2
(
1− ä

2a
ρ2 +

ȧ2

2a2
ρ2
)2

dT 2 +
1

a2

(
1 +

ȧ2

a2
ρ2
)2

dρ2

− 2
ȧ

a3
ρ

(
1− ä

2a
ρ2 +

ȧ2

2a2
ρ2
)(

1 +
ȧ2

a2
ρ2
)
dρdT

≈ ȧ2

a4
ρ2dT 2 +

1

a2

(
1 + 2

ȧ2

a2
ρ2
)
dρ2 − 2

ȧ

a3
ρdρdT

(2.60)

12



Chapter 2. The Expanding Universe

and also,

a2dr2

1− kr2/R2
0

=
a2

1− kρ2/(a2R2
0)
dr2

≈ a2
(
1 +

kρ2

a2R2
0

)
dr2

=
ȧ2

a2
ρ2dT 2 +

(
1 +

kρ2

a2R2
0

+ 2
ȧ2

a2
ρ2
)
dρ2 − 2

ȧ

a
ρdρdT,

(2.61)

where we have ignored terms in O
(
ρ3
)
and higher. Thus,

ds2 = −dt2 +
a2dr2

1− kr2/R2
0

+ a2r2dΩ2

≈ −
(
1− ȧ2

a2
ρ2
)
dT 2 +

(
1 +

kρ2

a2R2
0

+
ȧ2

a2
ρ2
)
dρ2 + ρ2dΩ2.

(2.62)

To extract the Newtonian effective potential, we can match with the Newtonian weak
field metrics g00 = −(1 + 2Φ) component, and read off

1 + 2Φ = 1− ȧ2

a2
ρ2, (2.63)

or

Φ(ρ) = −1

2

ȧ2

a2
ρ2. (2.64)

Notice ρ really measures the physical distance and the effective potential captures the
tidal effect from the cosmic acceleration by a local observer.

2.2 Geodesics from a Lagrangian

1.

d

dλ

(
∂L
∂ẋα

)
=

∂L
∂xα

−2
d

dλ

(
gµαẋ

µ
)
= gµν,αẋ

µẋν

gµαẍ
µ = −1

2
gµν,αẋ

µẋν + gµα,ν ẋ
µẋν

gµαẍ
µ = −1

2

(
gµν,α − gµα,ν − gνα,µ

)
ẋµẋν

ẍβ = −1

2
gβα

(
gµν,α − gµα,ν − gνα,µ

)
ẋµẋν

ẍβ = −Γβ
µν ẋ

µẋν ,

(2.65)

where we used the trick to replace gµα,ν with 1
2

(
gµα,ν + gνα,µ

)
on the fourth line because

it is contracted with ẋµẋν which is symmetric in µ and ν. This is exactly the geodesic
equation.

13



Chapter 2. The Expanding Universe

2. Note that the Lagrangian by definition is a function of some coordinate and its first
derivative.

dH
dλ

=
dL
dλ

− d

dλ

(
∂L
∂ẋµ ẋ

µ

)
=

∂L
∂λ

+
∂L
∂xµ ẋ

µ +
∂L
∂ẋµ ẍ

µ − d

dλ

(
∂L
∂ẋµ

)
ẋµ − ∂L

∂ẋµ ẍ
µ

=
∂L
∂xµ ẋ

µ − d

dλ

(
∂L
∂ẋµ

)
ẋµ

= 0,

(2.66)

where we invoked the Euler-Lagrange equation in the last line. Thus, the Hamiltonian H
is a constant along the geodesics.

2.3 Christoffel symbols from a Lagrangian

The metric tensor is given by
gµν = diag(−1, a2(t)δij), (2.67)

and thus,
L ≡ −gµν ẋ

µẋν = ṫ2 − a2δijẋ
iẋj. (2.68)

Applying the Euler-Lagrange equation for time coordinate shall give us

d

dλ

(
∂L
∂ṫ

)
=

∂L
∂t

2
dṫ

dλ
= −2aȧδijẋ

iẋj

d2t

dλ2 = −aȧδijẋ
iẋj.

(2.69)

Comparing this with the geodesic equation of 0-th component:

d2t

dλ2 = −Γ0
µν ẋ

µẋν , (2.70)

one can read off
Γ0
ij = aȧδij (2.71)

and
Γ0
00 = Γ0

0i = Γ0
i0 = 0. (2.72)

A bit of caution of notation abuse here: ȧ ≡ da
dt

while ẋµ ≡ dx
µ

dλ
.

Similarly, we can apply the Euler-Lagrange equation for k-th coordinate,

d

dλ

(
∂L
∂ẋk

)
=

∂L
∂xk

−2
d

dλ

(
a2δikẋ

i
)
= 0

a2δikẍ
i = −2aȧṫδikẋ

i

ẍk = −2
ȧ

a
ṫδki ẋ

i

(2.73)

14



Chapter 2. The Expanding Universe

Comparing this with the geodesic equation of k-th component:

d2xk

dλ2 = −Γk
µν ẋ

µẋν , (2.74)

one can read off

Γk
0i + Γk

i0 = 2
ȧ

a
δki (2.75)

or

Γk
0i = Γk

i0 =
ȧ

a
δki . (2.76)

Also,
Γk
00 = Γk

ij = 0. (2.77)

This result should not come as much of a surprise since we used the Euler-Lagrange equation
to derive the geodesic equation in the first place. Of course, the two approaches should give
the same result.

2.4 Geodesics in de Sitter space

1. The Lagrangian is

L =

(
1− r2

R2

)
ṫ2−
(
1− r2

R2

)−1

ṙ2−r2θ̇2−r2 sin2 θϕ̇2 ≡
(
1− r2

R2

)
ṫ2−
(
1− r2

R2

)−1

ṙ2−r2Ω̇2,

(2.78)
where we used dΩ2 ≡ dθ2 + sin2 θdϕ2 such that Ω̇2 = θ̇2 + sin2 θϕ̇2. Now, since the
Lagrangian has no apparent dependencies on t and Ω, the two coordinates must have
associated conserved quantity.

For t coordinate, we call this conserved quantity total energy E. Using the Euler-Lagrange
equation 1,

d

dτ

(
∂L
∂ṫ

)
= 0

√
E =

(
1− r2

R2

)
ṫ

E ≡
(
1− r2

R2

)2

ṫ2 (2.79)

For the solid angle Ω coordinate, we call this conserved quantity total angular momentum
L:

d

dτ

(
∂L
∂Ω̇

)
= 0

L ≡ r2Ω̇

L2 = r4Ω̇2 = r4(θ̇2 + sin2 θϕ̇2). (2.80)
1The reason of using

√
E instead of E to be the LHS is because we want the Lagrangian and the energy to

have same dimensions (though they are both dimensionless in this question due to the Lagrangian in the book
is written in a way that the mass of the particle has been set to unity.)
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Chapter 2. The Expanding Universe

2. Rewriting the Lagrangian with the conserved quantities E and L:

L =

(
1− r2

R2

)−1

(E − ṙ2)− L2

r2
. (2.81)

The problem 2.3 also told us that for a massive particle,

gµν ẋ
µẋν = −1 (2.82)

and thus,

L = 1(
1− r2

R2

)−1

(E − ṙ2)− L2

r2
= 1

ṙ2 = E −
(
1 +

L2

r2

)(
1− r2

R2

)
≡ E − Veff(r). (2.83)

Thus, the radial motion is governed by the effective potential

Veff(r) =

(
1 +

L2

r2

)(
1− r2

R2

)
= 1− L2

R2 +
L2

r2
− r2

R2 . (2.84)

The sketch of this potential is shown in Fig. 2.1.

Fig. 2.1: The effective potential for L = 0 and L = 0.5R
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3. From Eq. (2.83),

dr

dτ
=
√

E − Veff(r) =

√
E − 1 +

r2

R2 , (2.85)

where we set L = 0 since the particle has only radial velocity. Thus,

∫ r

0

dr′√
E − 1 + r

′2

R
2

= τ

R sinh−1

(
r

R
√
E − 1

)
= τ

r = R
√
E − 1 sinh

( τ
R

)
. (2.86)

The ∆τ is apparently finite when ∆r = R.

To find the trajectory r(t), we notice that

dt

dτ
=

√
E

(
1− r2

R2

)−1

. (2.87)

Thus,

dr

dt
=

dτ

dt

dr

dτ
=

1√
E

(
1− r2

R2

)√
E − 1 +

r2

R2 . (2.88)

Then,

∆t =

∫ R

0

√
Edr(

1− r
2

R
2

)√
E − 1 + r

2

R
2

=

R tanh−1

 √
Er

R
√

E − 1 + r
2

R
2

R

0

= ∞.

(2.89)
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2.5 Distances

1. The proper distance is given by ℓ0 ≡ Sk=0(χ) ≡ χ for a flat universe (k = 0). From
Eq. (2.67) of the textbook:

ℓ0 ≡ χ(z) =

∫ t0

t1

dt

a(t)

=

∫ z

0

dz

H(z)

=
1

H0

√
Ωm

∫ z

0

dza3/2 (cf. Eq. (2.144) of textbook)

=
1

H0

√
Ωm

∫ z

0

dz′(1 + z′)−3/2(cf. Eq. (2.63) of textbook)

=
2

H0

√
Ωm

(
1− 1√

1 + z

)
= 3t0

(
1− 1√

1 + z

)
(cf. Eq. (2.151) of textbook), (2.90)

where we also plugged in Ωm = 1 for a matter-dominated universe in the last line. Note
that this equation can also be inverted to get an expression for (1 + z):

1 + z =

(
1− ℓ0

3t0

)−2

. (2.91)

From Eq. (2.71) of the textbook, we then have

dL(z) = (1 + z)dM(z) ≡ (1 + z)ℓ0 = ℓ0

(
1− ℓ0

3t0

)−2

. (2.92)

When ℓ0 → 3t0, dL → ∞. This corresponds z → ∞ or a(t) → 0, which is exactly the Big
Bang singularity. This implies everything was infinitesimally close at the singularity.

2. By Eq. (2.83) of the textbook,

dA(z) =
dM(z)

1 + z
≡ ℓ0

1 + z
=

2

H0

(
1− 1√

1 + z

)
1

1 + z
. (2.93)

A plot of the angular size as a function of the redshift z is shown in Fig. 2.2. Indeed,
the angular size of these objects at first decreases with distance, but then becomes larger
beyond a critical distance.

To find the maximum of the angular diameter distance (i.e., the minimum of the angular
size) of the object, we take the derivative with respect to the redshift z and set the
derivative to 0:

0 =
ddA
dz

=
2

H0

[
− 1

(1 + zmin)
2 +

3

2

1

(1 + zmin)
5/2

]
. (2.94)

18



Chapter 2. The Expanding Universe

Fig. 2.2: The angular size δθ as a function of redshift z.

Thus,

zmin =
5

4
. (2.95)

At this redshift, the angular diameter distance is

dA(zmin) =
8

27H0

. (2.96)

From Eq. (2.93), the angular diameter distance vanishes at two points: z → 0 and z → ∞,
or in other words, the angular size δθ = D

dA
for an object with physical size D diverges.

The z → 0 singularity corresponds to objects that are right on our eyes at present time,
which of course, occupies an infinite angular size. The z → ∞ corresponds to the Big
Bang singularity, at which point everything was so close to each other, and thus, also
takes an infinite angular size, as it spreads out the whole universe at present time.

2.6 Flatland cosmology

1. The metric tensor is gµν = (−1, a2δij). The calculation and reasoning are no different
from the 3-spatial dimensions case. Thus, the only nonzero components are the same as
Eq. (2.45) of the textbook

Γ0
ij = aȧδij,

Γi
0j =

ȧ

a
δij,

(2.97)

except that now even Γi
jk vanishes because gij ≡ a2δij has no spatial dependence.
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2. Since the Christoffel symbols are the same as the 3 + 1 dimension case, so are the Ricci
tensor except that δii = 2 instead of 3 now. From Eq. (2.121) of the textbook, we have

R00 = −∂0Γ
i
0i − Γi

0jΓ
j
0i

= −∂0

(
ȧ

a

)
δii − δijδ

j
i

(
ȧ

a

)2

= −2
ä

a
+ 2

(
ȧ

a

)2

− 2

(
ȧ

a

)2

= −2
ä

a
.

(2.98)

Similarly, from Eq. (2.122) of the textbook, we have

Rij = ∂0Γ
0
ij + Γl

l0Γ
0
ij − Γ0

ilΓ
l
j0 − Γl

i0Γ
0
jl

=
(
ȧ2 + aä+ 2ȧ2 − ȧ2 − ȧ2

)
δij

=
(
ȧ2 + aä

)
δij

(2.99)

3. First note that the Ricci scalar is given by

R = gµνRµν = −R00 +
1

a2
δijRij = 2

ä

a
+

2

a2
(
ȧ2 + aä

)
= 2

[
2
ä

a
+

(
ȧ

a

)2
]
. (2.100)

From the Einstein equations,

G00 ≡ R00 −
1

2
Rg00 = 8πGT00

−2
ä

a
+

[
2
ä

a
+

(
ȧ

a

)2
]
= 8πGρ

(
ȧ

a

)2

= 8πGρ , (2.101)

and

Gij ≡ Rij −
1

2
Rgij = 8πGTij(

ȧ2 + aä
)
δij −

[
2
ä

a
+

(
ȧ

a

)2
]
a2δij = 8πGa2Pδij

ä

a
= −8πGP . (2.102)

4. Note that the conservation of the energy density is given by ν = 0

∇µT
µ
0 = 0 =⇒ ∂µT

µ
0 + Γµ

µλT
λ
0 − Γλ

µ0T
µ
λ = 0

∂0T
0
0 + Γi

i0T
0
0 − Γi

j0T
j
i = 0

ρ̇+ 2
ȧ

a
(ρ+ P ) = 0. (2.103)
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Let P = wρ. Then,
ρ̇

ρ
= −2

ȧ

a
(1 + w). (2.104)

Thus, we have

ρ ∝ a−2(1+w) , (2.105)

from which we can read off n = 2(1 + w).

For a pressureless fluid, w = 0, and thus, ρ ∝ a−2. The energy density decreases as the
inverse of area growth, as expected.

5. Using the 2 + 1 dimension version of the first Friedmann equation (cf. Eq. (2.101)), and
the scaling of the energy density (cf. Eq. (2.105)), we have(

ȧ

a

)2

∝ a−2(1+w)

a1+w ∝ t

a ∝ t1/(1+w) . (2.106)

We can read off q = 1
1+w

.

2.7 Friedmann universe

1. The Friedmann equation is (
ȧ

a

)2

=
ρ

3
− k

a2R2
0

, (2.107)

where ρ = ρ0

a
(1+3w) +Λ (cf. Eq.(2.107) of the textbook, with Λ explicitly split out). Hence,

we can rewrite the Friedmann equation as

1

2
ȧ2 − ρ0

6

1

a(1+3w)
+

K

2
− Λ

6
a2 = 0. (2.108)

The first the term can be recognized as the kinetic term, while the rest is the potential

V (a) = −ρ0
6

1

a(1+3w)
+

K

2
− Λ

6
a2 . (2.109)

The sketch of V (a) for the 3 cases are shown in Fig. 2.3.

Note at amax, ȧ = 0 and hence, by Eq. (2.108), amax is determined by where V (amax) = 0.

(i) k = 0, Λ < 0:

−ρ0
6

1

a(1+3w)
max

− Λ

6
a2max = 0,

amax =
(
−ρ0
Λ

) 1
3(1+w)

. (2.110)

Since Λ < 0, the RHS has real solution, and hence, a physical amax.
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(i) k = 0, Λ < 0

(ii) k = ±1, Λ = 0

(iii) k = 0, Λ > 0

Fig. 2.3: Potential V (a) for the three cases.
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(ii) k = ±1, Λ = 0:

−ρ0
6

1

a(1+3w)
max

± 1

2R2
0

= 0,

amax =

(
±ρ0R

2
0

3

) 1
1+3w

, (2.111)

for k = ±1. However, only for k = +1, does this have a real solution and hence, a
physical amax.

(iii) k = 0, Λ > 0:

The formula is already given by Eq. (2.110). However now, since Λ < 0, there is no
real solution and hence, no physical amax.

These results can be confirmed with the sketch as well. The amax only exists for those
V (a) that can cross zero point.

2. From Eq. (2.157) of the textbook,

a′′ +
1

R2
0

a =
1

6
(ρ− 3P ) a3,

a′′ +
1

R2
0

a =
ρ

6
(1− 3w) a3,

a′′ +
1

R2
0

a =
ρ0
6
(1− 3w) a−3w , (2.112)

where ρ = ρ0

a
(1+3w) is again invoked.

The solution can be simply verified by explicitly plugging into the differential equation.

Since the trig function sin can be at most 1,

A = amax =

(
ρ0R

2
0

3

) 1
1+3w

. (2.113)

0 ≡ a(η = 0) =⇒ 0 = sin(B) =⇒ B = πn, n = 0, ±1, ±2, · · · . (2.114)

We can choose the principal n = 0 and set B = 0 . Then,

a(η) =

(
ρ0R

2
0

3

) 1
1+3w

[
sin

(
1 + 3w

2

η

R0

)] 2
1+3w

. (2.115)

From Eq. (2.115), the big crunch happens when

sin

(
1 + 3w

2

η

R0

)
= 0. (2.116)
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(i) Pressureless matter (w = 0):

This happens when

η

2R0

= πn =⇒ η = 2πnR0, n = 0, ±1, ±2, · · · . (2.117)

As the n = 0 principal can be interpreted as the Big Bang, the n = 1 principal then
should be interpreted as the Big Crunch. Hence,

η = 2πR0 . (2.118)

By the definition of the conformal time η, since the photon travels on null path,
the conformal time tells exactly the distance the photon can travel. In the case of
a pressureless matter universe, η = 2πR0. Hence, the photon travels exactly one
circle before the universe ends.

(ii) Radiation (w = 1
3
):

This happens when

η

R0

= πn =⇒ η = πnR0, n = 0, ±1, ±2, · · · . (2.119)

As the n = 0 principal can be interpreted as the Big Bang, the n = 1 principal then
should be interpreted as the Big Crunch. Hence,

η = πR0 . (2.120)

In the case of a radiation universe, η = πR0. Hence, the photon travels exactly half
circle before the universe ends.

2.8 Einstein’s biggest blunder

1. For a static solution to exist, the scale factor a must remain a constant in the whole
history of universe, which requires all of its time derivative to vanish. The 2nd Friedmann
equation says

ä

a
= −4πG

3
(ρ+ 3P ). (2.121)

Since both density ρ > 0 and pressure P > 0, the RHS remains negative. In the LHS,
as the scale factor a > 0 always, it must always be that ä < 0, and it never vanishes.
Therefore, there is no static solution to the Einstein equations.

2. With the addition of a cosmological constant Λ, the Einstein equations are modified to

Gµ
ν = 8πGT µ

ν − Λgµν . (2.122)

Hence, for a pressureless matter only universe, the 1st Friedmann equation becomes(
ȧ

a

)2

=
8πG

3
ρm − k

a2R2
0

− Λ

3
. (2.123)
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The 2nd Friedmann equation (with P = 0) becomes

ä

a
= −4πG

3
ρm +

Λ

3
. (2.124)

For the ä = 0, we then have
Λ = 4πGρm . (2.125)

Plugging this back into the fist Friedmann equation Eq. (2.123), and require it to vanish
as well, we then have

4πG

3
ρm =

k

a2R2
0

. (2.126)

Since ρm > 0, a > 0, and R0 > 0, it must be that k > 0, and hence, the universe is
positively curved (k = 1), and its spatial curvature is

R0 =

√
3

4πGa2ρm
. (2.127)

This universe is static provided that ρm is a constant such that any higher time derivatives
of a vanish identically.

3. From the continuity equation, we know that (cf. Eq. (2.108) of the textbook), ρm ∝ a−3.
Combined this with the hints, we have

1 + δ(t) ∝ a−3,

δ(t) ∝ a−3 − 1 = (1 + ϵ(t))−3 − 1 ≈ −3ϵ(t) . (2.128)

Hence, the two perturbations are related to each other.

Now, plugging this into the 2nd Friedmann equation Eq. (2.124) with Λ = 4πGρm,0, we
have

ä

a
= −4πG

3
ρm,0δ(t) = −4πG

3
ρm,0(a

−3 − 1)

ϵ̈ =
Λ

3
(a− a−2) ≈ Λ

3
(1 + ϵ− 1 + 2ϵ) = Λϵ, (2.129)

which has solution

ϵ = Ae
√
Λt +Be−

√
Λt . (2.130)

As the δ(t) ∝ −3ϵ(t) (cf. Eq. (2.128)), both perturbations grow exponentially with time,
and this static universe is unstable.

2.9 The accelerating universe

1. Note that the deceleration parameter is just q(t) ≡ − äa

ȧ
2 = −2nd FE

1st FE
. The 1st FE with no

radiation can be written as (cf. Eq. (2.204) of the textbook)(
ȧ

a

)2

≡ H2 = H2
0

[
Ωma

−3 + ΩΛ + (1− Ω0)a
−2
]

(2.131)
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and the 2nd FE with pressureless matter and a positive cosmological constant Λ can be
written as (cf. Eq. (2.137) of the textbook and Eq. (2.124))

ä

a
= −4πG

3
ρm +

Λ

3
= H2

0

(
−1

2
Ωma

−3 + ΩΛ

)
. (2.132)

Hence,

q(t) ≡ − äa

ȧ2
= −2nd FE

1st FE
=

1
2
Ωma

−3 − ΩΛ

Ωma
−3 + ΩΛ + (1− Ω0)a

−2 . (2.133)

The plot is displayed in Fig. 2.4.

Fig. 2.4: q(t) as a function of a(t) for our universe.

Plugging in a(t0) = 1 today into Eq. (2.133), we see

q0 =
1

2
Ωm − ΩΛ . (2.134)

For our universe, we get
q0 = −0.55 , (2.135)

which is a negative number so our universe is accelerating its expansion.

2. Note that if we take the time derivative of the deceleration parameter directly and divided
by the Hubble parameter:

q̇

H
= −

...
a a2

ȧ3
− äa

ȧ2
+ 2

ä2a2

ȧ4
= −J + q + 2q2. (2.136)

To get an easy form for taking time derivative of q, we first take the time derivative of
the Hubble parameter

Ḣ =
d

dt

(
ȧ

a

)
=

ä

a
−
(
ȧ

a

)2

=
ä

a
−H2. (2.137)

Hence, the 2nd FE can be written as

ä

a
= Ḣ +H2. (2.138)
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Then, since we know q(t) ≡ − äa

ȧ
2 = −2nd FE

1st FE
, we can write it as

q = −Ḣ +H2

H2 = − Ḣ

H2 − 1 (2.139)

This allows us the

q̇ = − Ḧ

H2 + 2
Ḣ2

H3 (2.140)

Hence,

J = − q̇

H
+ q + 2q2 =

Ḧ

H3 − 2
Ḣ2

H4 −
Ḣ

H2 − 1 + 2

(
− Ḣ

H2 − 1

)2

= 1+ 3
Ḣ

H2 +
Ḧ

H3 . (2.141)

Taking the time derivative of the 1st FE in the form of Eq. (2.136) of the textbook
successively and also invoke the continuity equation (ρ̇ = −3Hρ) for matter:

2HḢ =
8πG

3
ρ̇+ 2

k

a2R2
0

H = −8πGHρ+ 2
k

a2R2
0

H, (2.142)

Ḣ = −4πGρ+
k

a2R2
0

. (2.143)

Taking Another time derivative and invoking the continuity equation again:

Ḧ = −4πGρ̇+ 2
k

a2R2
0

H = 12πGHρ− 2
k

a2R2
0

H. (2.144)

Plugging these back into Eq. (2.141), we have

J = 1 +
1

a2H2

k

R2
0

. (2.145)

3. At the point of matter-cosmological constant equality ρm,mΛ = ρΛ

ρΛ
ρm,0

=
ρm,mΛ

ρm,0

= a−3
mΛ = (1 + zmΛ)

3

ΩΛ

1− ΩΛ

= (1 + zmΛ)
3

zmΛ =

(
ΩΛ

1− ΩΛ

)1/3

− 1 . (2.146)

This is the point that the universe starts to be dominated by the cosmological constant.

In our universe, with ΩΛ = 0.7, we have

zmΛ ≈ 0.33 . (2.147)
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4. The point universe start accelerating is defined by

q̇acc = 0, q̈acc < 0. (2.148)

Since a > 0 always, this is the point

äacc = 0. (2.149)

Plugging into the 2nd FE, one has

−4πG

3
ρm,acc +

Λ

3
= 0

ρm,0a
−3 − 2ρΛ = 0

zacc =

(
2
ρΛ
ρm,0

)1/3

− 1 =

(
2
ΩΛ

Ωm

)1/3

− 1 =

(
2− 2Ωm

Ωm

)1/3

− 1 . (2.150)

For our universe, plugging Ωm = 0.3,

zacc ≈ 0.67 (2.151)

is the redshift at which the universe begins accelerating.

5. From 1st FE,

H2 = H2
0

[
Ωma

−3 + (1− Ωm)
]

ȧ = H0

√
Ωma

−1 + (1− Ωm)a
2. (2.152)

Define u2 = a3, then

da =
2

3
u−1/3du. (2.153)

Integrating Eq. (2.152),

3

2
H0

√
1− Ωmt =

3

2

∫ a

0

da′√(
Ωm

1−Ωm

)
a′−1 + a′2

=

∫ u

0

du′

u1/3

√(
Ωm

1−Ωm

)
u′−2/3 + u′4/3

=

∫ u

0

du′√(
Ωm

1−Ωm

)
+ u′2

=

sinh−1

 u′√
Ωm

1−Ωm

u

0

= sinh−1

(√
1− Ωm

Ωm

u

)

= sinh−1

(√
1− Ωm

Ωm

a3/2
)

(2.154)
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Hence,

a(t) =

(
Ωm

1− Ωm

)1/3

sinh2/3

(
3

2
H0

√
1− Ωmt

)
, (2.155)

from which we can read off

A =

(
Ωm

1− Ωm

)1/3

, (2.156)

and

α =
3

2
H0

√
1− Ωm . (2.157)

• At early universe, we can Taylor expand the sinh(x) → x. Hence,

a ∝ t2/3, (2.158)

which is the correct limiting behavior for a matter-only Einstein-de Sitter universe
(cf. Eq.(2.147) of the textbook).

At late universe, we can use the exponential form of sinh(x) = e
x−e

−x

2
and note that

the ex dominates the late time behavior:

a ∝ eH0

√
ΩΛt, (2.159)

which is the correct limiting behavior for a cosmological constant-only de Sitter
universe (cf. Eq.(2.147) of the textbook).

•
ȧ =

2

3
Aα(sinh(αt))−1/3 cosh(αt). (2.160)

ä =
2

9
Aα2(sinh(αt))−4/3(cosh(2αt)− 2). (2.161)

...
a =

8

27
Aα3(sinh(αt))−7/3 cosh3(αt). (2.162)

Then, we have

q ≡ − äa

ȧ2
= −1

2

cosh(2αt)− 2

cosh2(αt)
=

3

2
sech2(αt)− 1 , (2.163)

where A is given Eq. (2.156) and α is given by Eq. (2.157). For the jerk,

J ≡
...
a a2

ȧ3
= 1 , (2.164)

as expected for a flat universe.

• Invert the solution and plugging a(t0) = 1. We can estimate the age of our universe
as

t0 =
2

3

1

H0

√
1− Ωm

sinh−1

(√
1− Ωm

Ωm

)
≈ 14.0 Gyr , (2.165)

where we have plugged in Ωm = 0.3 and H0 = h × (9.777 Gyr)−1 with h = 0.674
(cf. Appendix C.2.3 of the textbook).
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6. We first need to figure out the comoving distance χ. From Eq. (2.67) of the textbook,

χ =

∫ t0

t1

dt

a(t)
=

∫ 1

a

da′

Ha′2
=

1

H0

∫ 1

a

da′

a′2
√

Ωma
′−3 + (1− Ωm)

. (2.166)

Let s = 1
a
= 1 + z. Then, −a2ds = da. We have

χ =
1

H0

∫ s

1

ds′√
Ωms

′3 + (1− Ωm)
, (2.167)

which unfortunately has no closed form in general and has to be integrated numerically.
Using Eq. (2.71) of the textbook and the fact that in flat universe dM(z) = χ(z), we have

dL(z) = (1 + z)χ(z), (2.168)

where χ is given by Eq. (2.167).

Doing the integration numerically, the figure is displayed in Fig. 2.5.

Fig. 2.5: Luminosity distance (in units of c/H0) as a function of redshift in a flat universe.

At z = 0.5, the luminosity distances (in units of c/H0) of the two models are about

dL(z) =

{
0.55 Ωm = 1

0.66 Ωm = 0.3
. (2.169)

Hence, the accuracy needs to be at least

0.66− 0.55

0.66
≈ 16.7 % (2.170)

to distinguish the two models.
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2.10 Phantom dark energy

1. • Invoking continuity equation, we have

ρX ∝ a−3(1+wX). (2.171)

Since wX < −1 for phantom dark energy, the power is positive. Thus, ρX increases
with the scale factor a.

Next, we need to prove that the universe is, once expanding, always expanding such
that the scale factor increases with time. From the 1st FE,

H2

H2
0

= Ωma
−3 + ΩXa

−3(1+wX). (2.172)

For an expanding universe to turn to shrinking, there must be at turn point H = 0.
However, as −3(1 + wX) > 0, the RHS never goes to 0.

Therefore, as the energy density of the phantom dark energy ρX increases with the
scale factor a, and a increases with time, we conclude that the energy density of the
phantom dark energy must always increases with time.

•

ΩX(a) ≡
ρX(a)

ρcrit(a)

=
ρX(a)

ρX,0

ρX,0

ρcrit,0

ρcrit,0
ρcrit(a)

= a−3(1+wX)ΩX,0

H2
0

H2

= ΩX,0

(
ΩX,0 + Ωm,0a

3wX
)−1

=

(
1 +

Ωm,0

ΩX,0

a3wX

)−1

.

(2.173)

• Inverting the above,

a =

[
ΩX,0

Ωm,0

(Ω−1
X − 1)

] 1
3wX

. (2.174)

Plugging the values ΩX,0 = 0.75, Ωm,0 = 1−ΩX,0 = 0.25, wX = −2, and ΩX = 0.999,
we have

a ≈ 2.63 . (2.175)
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2. Integrating the 1st FE, we have

∆t =
1

H∗

∫ ∞

a∗

da√
Ωm,∗a

−1 + ΩX,∗a
−1−3wX

≈ 1

H∗

∫ ∞

a∗

da√
ΩX,∗a

−1−3wX

=
1

H∗
√

ΩX,∗

∫ ∞

a∗

daa(1+3wX)/2

= − 2

(1 + 3wX)H∗
√
ΩX,∗

a3(1+wX)/2
∗ ,

(2.176)

where we have used the fact that as a−1−3wX diverges as a → ∞, the contribution from
a−1−3wX ≫ a−1 for large a.

We can solve for a∗ using Eq. (2.174) and the fact that at t∗, we have ΩX,∗ = Ωm,∗ =
1
2
.

a∗ =

(
ΩX,0

Ωm,0

) 1
3wX

. (2.177)

Hence,

∆t = − 2
√
2

(1 + 3wX)H∗

(
ΩX,0

Ωm,0

) 1+wX
2wX

. (2.178)

The RHS is a perfectly positive finite physical quantity. Hence, in such a universe, ”Big
Rip” is real.

3. Recall that the redshift of the wavelength is given by (cf. Eq.(2.56) of the textbook)

λrip =
a(trip)

a(tCMB)
λCMB. (2.179)

As a(trip) → ∞ and both a(tCMB) and λCMB are finite, we conclude that λrip → ∞ .

Hence, the wavelength of CMB photons would be infinitely long, and the universe becomes
really ”dark”.
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The Hot Big Bang

Exercise 3.1

In the relativistic limit (x → 0), we have

J±(0) =

∫ ∞

0

dξ
ξ3

eξ ± 1
(3.1)

The quickest way to compute J−(0) is to invoke the identity from Eq. (D.34) in the textbook
appendix (which also provides the fastest route to I−(0)):

ζ(s) =
1

Γ(s)

∫
dx

xs−1

ex − 1
. (3.2)

Thus,

J−(0) = Γ(4)ζ(4) = 3!ζ(4) = 6ζ(4) . (3.3)

Similarly,

J+(0) =

∫ ∞

0

dξ
ξ3

eξ + 1

=

∫ ∞

0

dξ
ξ3

eξ − 1
− 2

∫ ∞

0

dξ
ξ3

e2ξ − 1

= J−(0)− 2×
(
1

2

)4 ∫ ∞

0

d(2ξ)
(2ξ)3

e2ξ − 1

= J−(0)− 2×
(
1

2

)4

J−(0)

=
7

8
J−(0) .

(3.4)

Exercise 3.2

We begin with a quick and rough derivation. Starting from Eq. (3.11), Eq. (3.12), and Eq. (3.27)
of the textbook, and noting that in the non-relativistic limit (x ≫ 1), we find:
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We shall derive these in a quick and dirty way. Starting from Eq. (3.11), Eq. (3.12), and
Eq. (3.27) of the textbook, and noting that in the non-relativistic limit (x ≫ 1),

dn

dT
=

g

2π2

∫ ∞

0

dpp2
√
p2 +m2

T 2 e−
√

p
2
+m

2
/T =

ρ

T 2 . (3.5)

Thus, we conclude ρ = T 2 dn
dT

. On the other hand,differentiating the number density expression
as in Eq. (3.31) of the textbook with respect to T yields

ρ = T 2 dn

dT
= T 2

(
m

T 2n+
3

2

n

T

)
= mn+

3

2
nT . (3.6)

Comparing this with the non-relativistic expansion E(p) =
√

m2 + p2 ≈ m+ p
2

2m
and referring to

Eq. (3.9) of the textbook, it’s evident that the mn term comes from the rest mass contribution,

while the 3
2
nT term comes from the kinetic energy p

2

2m
.

Now, in the non-relativistic limit,

P (T ) ≈ 1

3m

g

(2π)3

∫
d3pf(p, T )p2. (3.7)

Comparing with the result above, we obtain

P (T ) =
1

3m
× 3

2
nT × 2m = nT . (3.8)

Exercise 3.3

TdS = dU + PdV − µdN. (3.9)

Using S ≡ sV , U ≡ ρV , and N ≡ nV , this becomes

T d(sV ) = d(ρV ) + PdV − µ d(nV ) ,

(Ts− ρ− P − µn)dV + V

(
T
ds

dt
− dρ

dt
+ µ

dn

dt

)
dt = 0. (3.10)

Each bracketed term must vanish independently. The first gives

s =
ρ+ P − µn

T
. (3.11)

Now, recall the continuity equation:

ρ̇+ 3H(ρ+ P ) = 0

ρ̇ = −3H(Ts+ µn), (3.12)

where we used the result above.
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The vanishing of the second bracket implies

ṡ =
1

T
ρ̇− µ

T
ṅ,

ṡ = −3H
(
s+

µ

T
n
)
− µ

T
ṅ,

a3ṡ+ 3a2ȧs = −3a2ȧ
µ

T
n− a3

µ

T
ṅ,

d(sa3)

dt
= −µ

T

d(na3)

dt
. (3.13)

The total entropy is conserved if the right-hand side of Eq. (3.13) vanishes. This occurs either

when µ/T → 0 (i.e., the chemical potential is negligible), or when d(na
3
)

dt
= 0 (i.e., the total

particle number is conserved).

Exercise 3.4

Eq. (3.82)–(3.84) from the textbook are still valid, except we now treat Xe = 1. Then,

(TdecT0)
3/2 =

π2

2ζ(3)

H0

√
Ωm

ησT

,

(T 2
0 (1 + zdec))

3/2 =
π2

2ζ(3)

H0

√
Ωm

ησT

,

zdec =

(
π2

2ζ(3)

H0

√
Ωm

ησT

)2/3

T−2
0 − 1 ≈ 34.6 , (3.14)

where we have plugged in the values H0 = 0.674×2.133×10−33 eV, Ωm = 0.315, η ≈ 6×10−10,
σT = 2× 10−3 MeV−2, and T0 ≈ 0.235 meV (cf. Appendix C.2.3 of the textbook).

3.1 Chemical potential of electrons

1. Using Eq. (3.4) and Eq. (3.8) of the textbook for fermions, we obtain

n− n̄ =
g

2π2

∫ ∞

0

dp

 p2

e

(√
p
2
+m

2−µ

)
/T

+ 1

− p2

e

(√
p
2
+m

2
+µ

)
/T

+ 1


=

g

2π2T
3

∫ ∞

0

dξ

[
ξ2

eξ−y + 1
− ξ2

eξ+y + 1

]
≡ g

2π2T
3I(ξ),

(3.15)

where we used that the chemical potential of the antiparticle is opposite in sign to that
of the particle. We also introduced the dimensionless variables ξ ≡ p/T and y ≡ µ/T ,
and took the relativistic limit m ≪ T .
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We now apply a linear change of variable: ξ′ = ξ − y in the first term and ξ′ = ξ + y in
the second. The integral becomes

I(ξ′) =
∫ ∞

−y

dξ′
(ξ′ + y)2

eξ
′
+ 1

−
∫ ∞

y

dξ′
(ξ′ − y)2

eξ
′
+ 1

=

∫ ∞

0

dξ′
(ξ′ + y)2

eξ
′
+ 1

+

∫ 0

−y

dξ′
(ξ′ + y)2

eξ
′
+ 1

−
∫ ∞

0

dξ′
(ξ′ − y)2

eξ
′
+ 1

+

∫ y

0

dξ′
(ξ′ − y)2

eξ
′
+ 1

=

∫ ∞

0

dξ′
[
(ξ′ + y)2 − (ξ′ − y)2

eξ
′
+ 1

]
+

∫ y

0

dξ′
[
(−ξ′ + y)2

e−ξ
′
+ 1

+
(ξ′ − y)2

eξ
′
+ 1

]
= 4y

∫ ∞

0

dξ′
ξ′

eξ
′
+ 1

+

∫ y

0

dξ′(ξ′ − y)2

=
π2

3
y +

y3

3
,

(3.16)

where I flipped the sign of ξ′ in the second term of the second line. Substituting this
result into Eq. (3.15) gives

n− n̄ =
gT 3

6π2

[
π2
(µ
T

)
+
(µ
T

)3]
. (3.17)

2. From subsection 3.1.3 of the textbook, we know that the baryon-to-photon ratio η ≡ nb

nγ
≡

nb−nb̄

nγ
remains conserved after the epoch of electron-positron annihilation. Moreover, since

the universe today is electrically neutral, we have

η ≡ nB

nγ

≈
np − np̄

nγ

=
ne − nē

nγ

.

Then, using Eq. (3.76) of the textbook, we get

ne − nē ≈ nb = ηnγ = η × 2ζ(3)

π2 T 3. (3.18)

Comparing this result with Eq. (3.17), and using ge = 2, we find

1

6ζ(3)

[
π2
(µe

T

)
+
(µe

T

)3]
= η. (3.19)

Plugging in the observed values η ≈ 6× 10−10 yields(µe

T

)[
π2 +

(µe

T

)2]
≈ 4× 10−9. (3.20)

Since the right-hand side is significantly less than 1, and the bracketed term on the left-
hand side is definitely greater than 1, it follows that µe

T
≪ 1. Thus, we can neglect the(

µe

T

)2
term and conclude that

µe

T
≈ 10−10 ∼ 10−9 .
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3.2 Conservation of entropy

1. From Eq. (3.4) of the textbook with µ = 0, we have

∂f

∂T
=

eE/T

(eE/T ± 1)2
E

T 2 , (3.21)

and

∂f

∂p
= − eE/T

(eE/T ± 1)2
1

T

dE

dp
= − eE/T

(eE/T ± 1)2
p

ET
. (3.22)

Inspecting Eq. (3.21) and Eq. (3.22), we observe that

∂f

∂T
= −E2

Tp

∂f

∂p
. (3.23)

From Eq. (3.10) of the textbook,

∂P

∂T
=

g

(2π)3

∫
d3p

(
∂f

∂T

)
p2

3E

= − g

(2π)3

∫
dΩ

∫
dp

(
∂f

∂p

)
p3E

3T

=
g

(2π)3

∫
dΩ

[∫
dp

(
p2E

T
+

p4

3ET

)
f −

[
f
p3E

3T

]∞
0

]
(IBP)

=
g

(2π)3

[∫
d3p

(
E

T
+

p2

3ET

)
f − 0

]
(f → 0 as p → ∞)

=
ρ+ P

T
. (cf. Eq. (3.9) and Eq. (3.10) of textbook) (3.24)

2. Note that for a massive spin-1 boson, its internal degrees of freedom is gX = 3. For the
neutrino-X system, we have

g∗S =

{
3 + 7

8
× 2 = 19

4
T ≳ mX ,

7
8
× 2 = 7

4
T < mX .

(3.25)

Similarly, since entropy is separately conserved for the neutrino-X system,

g∗S(aTν)
3 = const, (3.26)

throughout the annihilation process. Thus, for the neutrino, aTν now should increases

by a factor of (19
7
)
1
3 , while the photon thermal bath has the energy transferred from the

electron-positron annihilation and aTγ thus, increases by a factor of (11
4
)
1
3 as the textbook

discussed. Thus, the present neutrino temperature in this case is(
7

19

) 1
3

Tν,0 =

(
4

11

) 1
3

Tγ,0

Tν,0 =

(
76

77

) 1
3

Tγ,0 . (3.27)
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3.3 Degenerate neutrinos

1. Assuming µν > 0, from Eq. (3.9) of the textbook, we have

ρ(T ) =
gν

(2π)3

∫
d3pfp =

gν

2π2

∫
dp

p3

e
p−µν

T + 1
. (3.28)

Now, note that the Heaviside step function H(x) can be defined through

H(x) = lim
k→∞

1

1 + e−2kx
. (3.29)

This suggests

ρν(T ) =
gν

2π2

∫
dp

p3

1 + e
−2(µν

T )
(

1
2
− p

2µν

)

≈ gν

2π2

∫ ∞

0

dpp3H

(
1

2
− p

2µν

)
(µν ≫ T =⇒ µν

T
→ ∞)

=
gν

2π2

∫ µν

0

dpp3

=
gνµ

4
ν

8π2 . (3.30)

For antineutrinos, we have µν̄ = −µν < 0, by assumption. The effect is to change the

argument of the Heaviside step function in the above derivation to H
(
−1

2
− p

2µν

)
or in

other words, in the integral vanishes unless p < −µν < 0. However, since momentum is
always positive, the integral always vanishes. Thus,

ρν̄ ≈ 0. (3.31)

Note that the above conclusion would be reversed if the neutrinos have µν < 0. Thus,
the combined energy density of degenerate neutrinos and antineutrinos can be expressed
as

ρν + ρν̄ ≈ gν |µν |4

8π2 . (3.32)

2. Eq. (3.62) of the textbook still holds:

Tν =

(
4

11

)1/3

Tγ. (3.33)

The total energy density of degenerate neutrinos and antineutrinos is

ρν + ρν̄ ≈ Neff

gν |µν |4

8π2 . (3.34)
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Then,

ρν + ρν̄ ≤ ρcrit

Neff

gν |µν |4

8π2 ≲ 6× 103T 4
γ = 6× 103 ×

(
11

4

)4/3

T 4
ν

|µν |
Tν

≲

[
8π2 × 6× 103 ×

(
11

4

)4/3
1

gνNeff

]1/4
≈ 23.5 , (3.35)

where in the last step, we have plugged in the values gν = 2 and Neff = 3.

3. The degenerate neutrinos contribute extra component of energy density to the universe.
From Friedmann equation (cf. Eq. (3.129) of the textbook), this larger energy density
implies a larger Hubble expansion rate H as the universe was still radiation dominated
at this point. This then implies an earlier neutron decoupling and then freeze-out, i.e.
discussion following Eq.(3.120) of the textbook. This says there are more neutrons to
protons, and then there are more deuterium formed, and hence, an enhanced helium-4
abundance (This is actually already discussed in the textbook in the paragraph at the
end of the subsection Helium.).

3.4 Massive neutrinos

1. Simply from Eq. (3.12) of the textbook, and recall that neutrino is a fermion with internal
degree of freedom gν = 2:

ρν =
1

π2

∫ ∞

0

dp
p2
√
p2 +m2

ν

exp
[√

p2 +m2
ν/Tν

]
+ 1

≈ 1

π2

∫ ∞

0

dp
p2
√

p2 +m2
ν

e
p
Tν + 1

=
T 4
ν

π2

∫ ∞

0

dξ
ξ2
√

ξ2 +m2
ν/T

2
ν

eξ + 1
.

(3.36)
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2.

ρν =
T 4
ν

π2

∫ ∞

0

dξ
ξ3
√

1 +m2
ν/(ξ

2T 2
ν )

eξ + 1

≈ T 4
ν

π2

∫ ∞

0

dξ
ξ3 + ξ m

2
ν

2T
2
ν

eξ + 1

= ρν0 +
m2

ν

2T 2
ν

T 4
ν

π2

∫ ∞

0

dξξ

(
1

eξ − 1
− 2

e2ξ − 1

)
= ρν0 +

m2
ν

2T 2
ν

T 4
ν

π2 ξ(2)Γ(2)

[
1− 2×

(
1

2

)2
]

= ρν0 +
T 4
ν

24

m2
ν

T 2
ν

= ρν0

(
1 +

5

7π2

m2
ν

T 2
ν

)
,

(3.37)

where I have used ρν0 =
7π

2

120
T 4
ν in the last line.

3. Following the discussion of the exact solution of two-component universe in Subsec-
tion 2.3.6 of the textbook, the radiation contribute no source term to the second Fried-
mann equation. Therefore, the massive neutrinos can leave imprints on the CMB anisotropies
only if it behaves as a non-relativistic matter at the point of photon decoupling. We
also know that the present Tν,0 = 1.95 K. Note that after the neutrino decoupling
(T ∼ 1 MeV), which happens much before the photon decoupling (T ∼ 0.25 eV), the
neutrino g∗S(Tν) does not change. Invoking the consequence of entropy conservation
Eq. (3.54) of the textbook:

g∗S(Tν)T
3
ν a

3 = const, (3.38)

we have T ∝ a−1 ∝ (1+ z). Thus, we can deduce that at the point of photon decoupling:

Tν,dec = (1 + zdec)Tν,0 ≈ (1 + 1090)× 1.95 K = 2127 K = 0.183 eV, (3.39)

where I have plugged in values from Eq. (3.166) of the textbook. This sets the lower
bound of the mass of neutrinos for the neutrinos to becomes non-relativistic. Thus, the
smallest neutrino mass that is observable in the CMB is

mν ≳ Tν,dec ≈ 0.183 eV . (3.40)

4. Using the lower bound on the sum of the neutrino masses from oscillation experiments,
we deduce ∑

mν > 0.06 eV ≳ Tν,NR. (3.41)

Again, invoking the consequence of entropy conservation, we have the redshift for the
neutrino to become non-relativistic no later than

zν,NR =
Tν,NR

Tν,0

− 1 ≲
0.06 eV

1.95 K
− 1 =

0.06 eV

1.68× 10−4 eV
− 1 ≈ 356 . (3.42)
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5. Note that at the point of neutrino decoupling, neutrino still behaves as relativistic, and the
thus, the Eq. (3.65) of the textbook still applies at least up to the point neutrino becomes
non-relativistic. However, since neutrino becomes non-relativistic long after neutrino
decouples from the thermal bath and it also does not decay, its number is conserved
and its number density follows nν ∝ a−3 from Eq. (2.95) of the textbook. On the other
hand, we also know that the photon number density, after the decoupling of the electron-
positron annihilation, also follow nγ ∝ a−3. Thus, the Eq. (3.65) of the textbook still

applies today even though neutrinos are massive1:

nν ≈ 3

4
× 4

11
nγ ≈ 112 cm−3 (3.43)

per flavor, where I have plugged in nγ,0 ≈ 410.7 cm−3.

6. However, for the energy density of neutrino, we should use Eq. (3.32) of the textbook:

∑
ρν =

∑(
mν +

3

2
Tν,0

)
nν ≈

∑
mνnν , (3.44)

where I have approximated the relation by using the fact that Tν,0 = 1.68 × 10−4 eV ≪∑
mν ∼ O(0.01 eV).

Ωνh
2 =

∑
ρν

ργ,0
Ωγh

2

≈
∑

mνnν,0

ργ,0
Ωγh

2

=
3

11

∑
mν

nγ,0

ργ,0
Ωγh

2

≈ 3

11
× 410.7 cm−3

0.260 eV cm−3 × 2.473× 10−5
∑

mν

=

∑
mν

94 eV
,

(3.45)

where I have plugged in values from Appendix C.2.3 of the textbook.

From oscillation experiments,
∑

mν > 0.06 eV, this translates to

Ωνh
2 =

∑
mν

94 eV
>

0.06 eV

94 eV
≈ 6.4× 10−4 . (3.46)

This is not far away from the current cosmological bound Ωνh
2 < 0.001.

7. If a neutrino species is heavy enough to become non-relativistic well before the BBN,
it simply behaves like a cold dark matter. This is the essence behind model of sterile
neutrinos.

1This also justifies why we used Tν,0 = 1.95 K in the above derivations.
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3.5 Extra relativistic species

1. Recall from Eq. (3.23) of the textbook that for a relativistic species, the energy density
is given by

ρi =
π2

30
giT

4
i ×

{
1 bosons
7
8

fermions
. (3.47)

Thus,

∆Neff ≡ ρX
ρν

=
gXT

4
X

T 4
ν

×

{
4
7

bosons
1
2

fermions
, (3.48)

where I have used gν = 2. The spin of the new particle sX enters through the internal
degrees of freedom. Assuming that the particleX carries no SM gauge charges (electrically
neutral, colorless, and with no weak isospin), and that if it is a fermion it is either
Majorana-like or possesses only a single chirality,2 then if massive,

gX = 2sX + 1 =



1 s = 0

2 s = 1
2

3 s = 1

4 s = 3
2

5 s = 2

, (3.49)

and if massless,

gX =

{
1 s = 0

2 all other spins
. (3.50)

It is well known from QFT that there is no interacting theory for massless particles with
s > 2 in 4D spacetime. For the above reason, massive particles with s > 2, if fundamental,
violate the unitarity bound because their scattering amplitudes grow without bound with
energy3. Therefore, we restrict attention to spins with s ≤ 2.

From entropy conservation, g∗s,i(aTi)
3 = const, we have(

TX

Tν

)4

=

(
g∗s(Tdec,ν)

g∗s(Tdec,X)

) 4
3

. (3.51)

The effective numbers of relativistic species in entropy ofX and of neutrino evolve together
until X decoupled from the thermal bath, which is why Tdec,X comes into play.

Putting everything together,

∆Neff ≡ ρX
ρν

= gX

(
g∗s(Tdec,ν)

g∗s(Tdec,X)

) 4
3

×

{
4
7

bosons
1
2

fermions
. (3.52)

2These assumptions are made for a simple expression of gX . Relaxing any of them would increase gX
multiplicatively. In reality, such a particle would almost certainly decouple from the SM thermal bath well
before the EWPT since it interacts only feebly with the rest of the plasma, unless some exotic BSM interaction
is introduced. This is exactly what would happen if there were a right-handed neutrino.

3This is exactly analogous to the case of the longitudinal polarizations of massive weak gauge bosons, which
would violate unitarity bound without the Higgs mechanism. They must possess a well-defined massless limit
to be fundamental particles.
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Recall that neutrinos decouple shortly before electron-positron annihilation, at which
point g∗s(Tdec,ν) = 2 + 7

8
× 4 = 11

2
. Meanwhile,

g∗s(Tdec,X) =


247
4

shortly before QCDPT
69
4

shortly after QCDPT, but before µ, π annihilation
43
4

shortly after QCDPT and µ, π annihilation

, (3.53)

we have

∆Neff ≈ gX ×

{
4
7

bosons
1
2

fermions
×


0.0398 shortly before QCDPT

0.218 shortly after QCDPT, but before µ, π annihilation

0.409 shortly after QCDPT and µ, π annihilation

,

(3.54)
where gX is given in Eq. (3.49) and Eq. (3.50). The lesson is that the earlier X decou-
ples, the smaller its impact on ∆Neff. This is consistent with the boxed discussion below
Table 3.2 of the textbook, which notes that if neutrinos are Dirac particles, half of the
degrees of freedom must have decoupled in the very early universe. The Planck constrains
Neff = 2.99± 0.17 at 2σ including BAO data [2], while the SM predicts Neff = 3.046. We
therefore observe that relativistic species decoupling after the QCD phase transition are
essentially ruled out at the 2σ level.

Side Remark: An aside on neutrinos, which the textbook does not explain very
clearly, is that there is no issue with them being purely Dirac. The reason is that
the right-handed chiral field does not couple to any SM gauge interactions. As
a ”neutr”-ino, it is electrically neutral. As a lepton, it is colorless. And being
right-handed, it carries no weak isospin. Since it interacts only with the Higgs bo-
son, whose Yukawa coupling with neutrinos is extremely small (assuming neutrino
masses arise via electroweak symmetry breaking as for the other SM fermions),
it must decouple from the thermal bath well before even the electroweak phase
transition, leaving negligible imprints on Neff.

2. From Eq. (3.64) of the textbook,

g∗ = 2 +
7

8
× 2Neff

(
4

11

) 4
3

= 2 +
7

8
× 2× (3.046 + ∆Neff)

(
4

11

) 4
3

≈ 3.38 + 0.45∆Neff .

(3.55)

For a radiation-dominated universe, H ∝ √
ρ ∝ √

g∗. Hence, an increase in g∗ increases
the Hubble expansion rate H. The discussion then parallels that in Problem 3.3, part 3.

3.6 Gravitinos as dark matter

1. Starting from the general Boltzmann equation (cf. Eq. (3.93) of the textbook), where the
RHS is given by the gravitino production interaction rate Γgng, we have

1

a3
d(nia

3)

dt
= Γgng. (3.56)
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Let Ng ≡
ng

s
, and recall that entropy conservation (cf. Eq. (3.44) of the textbook) gives

d(sa3)

dt
= 0 =⇒ ds

dt
= −3Hs, (3.57)

so the Boltzmann equation can be rewritten as

dNg

dt
=

1

s

dng

dt
−

ng

s2
ds

dt
=

1

s

(
dng

dt
+ 3Hng

)
=

Γgng

s
. (3.58)

In the radiation-dominated universe, H ∝ T 2 (cf. Eq. (3.55) of the textbook), and away
from particle mass thresholds, T ∝ a−1 (cf. Eq. (3.54) of the textbook), so

dT

dt
=

dT

da

da

dt
= −HT. (3.59)

Hence,
dNg

dT
=

dNg

dt

dt

dT
= −

Γgng

HTs
. (3.60)

Integrating with respect to the temperature of the current universe and cutting off at the
reheating temperature gives

Ng ∼
∫ TR

0

dT

T

Γg

H

ng

s
. (3.61)

Note that although we used an approximation valid during the radiation-dominated
era, we have integrated from zero temperature. However, since gravitinos are produced
most efficiently during reheating after inflation, and since TR ≫ TEWPT ∼ 100 GeV ≫
TM-R equal ∼ 0.80 eV, the lower-temperature regime only alters the result negligibly.

Using Γg ∼ T
3

M
2
Pl

,
ng

s
∼ O(1), and H ∼ T

2

MPl
,

Ng,0 ∼
∫ TR

0

dT

T

Γg

H

ng

s
∼
∫ TR

0

dT

MPl

=
TR

MPl

. (3.62)

Side Remark: A simple alternative derivation follows from dimensional analysis.
The only relevant scales areMPl (since the gravitino arises from supergravity, whose
natural scale is MPl) and TR (the typical energy available to produce gravitinos).
The number of particles in a comoving volume is dimensionless, so it must scale

as either
(

TR

MPl

)n
or
(

MPl

TR

)n
. The correct choice has TR in the numerator: taking

MPl → ∞ would decouple gravity, so Ng → 0 (similarly, Ng → 0 as TR → 0).

Thus, only
(

TR

MPl

)n
has the correct scaling. Unless some mechanism forbids the

lowest-order term, the n = 1 contribution dominates. Therefore, Ng ∼ TR

MPl
.

2. If there is only one massless neutrino species, then the relativistic species today are
photons plus one species of neutrino. The present effective number of relativistic species
in entropy is

g∗S(T0) = 2 +
7

8
× 2×

(
4

11

)
=

29

11
. (3.63)
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The total entropy density today is (cf. Eq. (3.50) of the textbook)

s0 ≡
2π2

45
g∗S(T0)T

3
0 ≈ 23.41 K3 ×

(
kB
ℏc

)3

≈ 1950 cm−3 , (3.64)

where I used the CMB temperature T0 = 2.7255 K (cf. Appendix C.2.3 of the textbook)

and included the factor
(

kB
ℏc

)3
to convert to SI units.

3. The effective number of relativistic species is also modified under supergravity. At TR
4,

one must account for both the graviton (massless, since gravity is long range) and the
gravitino5.

A massless, spin-2 boson (the graviton) has

ggraviton = 2. (3.65)

A massive, spin-3
2
Majorana fermion (the gravitino) has6

gg = 2× 3

2
+ 1 = 4. (3.66)

However, the graviton decouples extremely early (typically at T ∼ MPl) since gravity is
so feeble7, and most likely before inflation itself. Its contribution is exponentially diluted
during inflation, so it can be neglected.

Thus,

g∗S(TR) = gSM∗S (TR) + gg∗S(TR) = 106.75 +
7

8
× 4 = 112.25. (3.67)

At T0, one can simply use the result from Eq. (3.63).

Then,

Ωgh
2 ≡

ρg,0
ρcrit,0

h2 (cf. Eq. (2.143) of the textbook)

≈
mgng,0

3M2
PlH

2
0

h2 (cf. Eq. (2.142) and Eq. (3.32) of the textbook)

=
mgNg,0T

3
0

g∗S(T0)

g∗S(Tdec)

3M2
PlH

2
0

h2 (cf. Eq. (3.106) of the textbook)

=
mgTRT

3
0

g∗S(T0)

g∗S(Tdec)

3M3
PlH

2
0

h2 (cf. Eq. (3.62))

∼ 0.0659

(
TR

109 GeV

)(
mg

1 GeV

)
g∗S(T0)

g∗S(Tdec)

, (3.68)

4Assuming all other superpartners of SM particles are already decoupled after reheating.
5It is consistent for the graviton to be massless while the gravitino is massive, since SUSY is broken.
6There is no extra factor of 2 since the gravitino is Majorana. In fact, gauge symmetry enforces all gauginos

to be Majorana in N = 1 SUSY.
7In fact, it is so feeble that the gravitino and graviton likely never entered thermal equilibrium after inflation.
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where I used T0 ≈ 0.235 meV, MPl ≈ 2.435 × 1018 GeV, and H0 = 2.133 × 10−33 eVh
(cf. Appendix C.2.3 of the textbook).

The decoupling temperature of the gravitino is highly model dependent, and so is g∗S(Tdec).
A few illustrative examples are:

Ωgh
2 ∼ 0.0659

(
TR

109 GeV

)(
mg

1 GeV

)
×


0.0235 Tdec,g > O

(
103 GeV

)
0.0404 Tdec,g ≳ TQCDPT

0.430 Tdec,g < TBBN

. (3.69)

3.7 Baryon asymmetry

• −3 ȧ
a
n: Dilution of the particle number density n(t) due to the expansion of the universe.

• −nn̄⟨σv⟩: Annihilation with the antiparticle counterpart, with thermally averaged cross
section ⟨σv⟩, where v is the relative speed between the particle and its antiparticle in the
system.

• P̄ (t): The source term that encapsulates any additional contributions to the number
density n(t).

1. Taking the CP conjugate of the Boltzmann equation for n(t), we have

dn̄

dt
= −3

ȧ

a
n̄− nn̄⟨σv⟩+ P̄ (t). (3.70)

By CPT invariance of QFT, the thermally averaged cross section is unchanged, ⟨σv⟩ =
⟨σv⟩. For what follows, we also impose P (t) = P̄ (t). Subtracting this from the Boltzmann
equation for n(t) gives

d(n− n̄)

dt
+ 3

ȧ

a
(n− n̄) = 0

d[(n− n̄)a3]

dt
= 0. (3.71)

Hence, (n− n̄)a3 is a constant.

2. Starting from the Boltzmann equation for n(t),

dn

dt
= −3

ȧ

a
n− nn̄⟨σv⟩+ P (t)

1

a3
d(na3)

dt
= −n2⟨σv⟩+ P (t), (3.72)

where I used the assumption that, although there is no initial particle–antiparticle sym-
metry, whatever contributes to n(t) through the source term P (t) contributes equally to
n̄(t), so (n− n̄)a3 remains constant during the evolution and thus n = n̄.
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At equilibrium, by definition the number density is at an extremum:

0 =
1

a3
d(na3)

dt

∣∣∣∣∣
t=teq

= −n2
eq⟨σv⟩|t=teq

+ P (teq). (3.73)

Hence, the RHS vanishes at equilibrium:

P (teq) = n2
eq⟨σv⟩|t=teq

. (3.74)

If, in addition, the source term P (t) is constant up to freeze-out (in general, not true8),
and the thermally averaged cross section ⟨σv⟩ is also constant (typically temperature
dependent, though thermal effects often do not change final freeze-out results by orders
of magnitude), then the Boltzmann equation can be written as

1

a3
d(na3)

dt
= −⟨σv⟩

[
n2 − n2

eq

]
. (3.75)

3. The derivation matches the Riccati equation treatment in Section 3.2.2 of the textbook,
so we quote the result:

Y ∞ ≈
xf

λ
, (3.76)

where xf ≡ m
Tf

and λ ≡ Γ(m)
H(m)

= m
3⟨σv⟩

H(m)
. If decoupling occurs in the early radiation-

dominated era, the Hubble parameter from the Friedmann equation (cf. Eq. (3.55) of the
textbook) is

H(m) ≈ π√
90

√
g∗(m)

m2

MPl

. (3.77)

4. A speed-up in the expansion rate H(m) corresponds to a smaller λ. Then, by Eq. (3.76)
(cf. Fig. 3.10 of the textbook), the abundance of surviving massive particles is enhanced.
Physically, earlier decoupling (set by Γ ∼ H) leaves less time for annihilation with an-
tiparticles, resulting in a larger freeze-out abundance.

5. Although the proton freeze-out temperature is not known a priori, we can assume for
protons that

mp

Tf
> 10, and thermal protons are always non-relativistic throughout cosmic

history. The reason is that QCD phase transition occurs at TQCDPT ∼ 100 MeV, while
mp ≈ 1 GeV; before QCDPT the notion of a “proton” does not exist.

Since most dynamics occurs when the temperature is at least an order of magnitude below
the proton mass, the derivation in Section 3.2.2 requires minor adjustments. Suppose the
relevant scale is T ∼ TQCDPT rather than T ∼ mp. Redefine

x ≡
TQCDPT

T
, (3.78)

λ ≡
Γ(TQCDPT)

H(TQCDPT)
=

T 3
QCDPT⟨σv⟩
H(TQCDPT)

. (3.79)

8One situation where this may hold is the case discussed above Eq. (3.98) in the textbook. It effectively
assumes that the sector coupled to the particle in question remains tightly coupled to the thermal plasma,
maintaining its equilibrium densities until the particle freezes out.

47



Chapter 3. The Hot Big Bang

Then Eq. (3.76) applies with these modified definitions.

Today’s np,0 is (cf. Eq. (3.106) of the textbook)

np,0 = Y ∞
p T 3

0

g∗S(T0)

g∗S(TQCDPT)
, (3.80)

while today’s nγ,0 is (cf. Eq. (3.24) of the textbook)

nγ,0 =
2ζ(3)

π2 T 3
0 , (3.81)

so

np,0

nγ,0

=
π2

2ζ(3)
Y ∞
p

g∗S(T0)

g∗S(TQCDPT)

≈ π2

2ζ(3)
xf

H(TQCDPT)

T 3
QCDPT⟨σv⟩

g∗S(T0)

g∗S(TQCDPT)

=
π3

2ζ(3)
√
90

xf

TQCDPT⟨σv⟩MPl

g∗S(T0)√
g∗S(TQCDPT)

.

(3.82)

Plugging in ⟨σv⟩ ≈ 100 GeV−2, g∗S(T0) = 3.94, g∗S(TQCDPT) = 17.25 (QCDPT occurs

well before neutrino decoupling), TQCDPT ≈ 100 MeV, MPl = 2.435 × 1018 GeV (cf. Ap-
pendix C.2.3 of the textbook), and assuming xf ∼ 10 (justification: after chiral symmetry
breaking the strong sector is described by chiral perturbation theory with pions as force
carriers, so protons should decouple around the pion decoupling scale Tf ∼ O(10 MeV)),
we find

np,0

nγ,0

≈ 5.30× 10−19 ≪ ηobs ≈ 6× 10−10 . (3.83)

Hence, this cannot explain the present proton-to-photon ratio.

This failure indicates that at least one assumption in the derivation is invalid. Reviewing
the assumptions:

• P (t) = P̄ (t): This is unlikely the issue. A violation of C and CP at T ∼ O(10 MeV)
large enough to account for an O

(
109
)
effect would probably already have been

observed experimentally (e.g., the LHC operates at ECM = 14 TeV)9.

• P (t) is a constant till proton freeze-out: This could fail in principle, but
quantitatively it is hard to generate the required O

(
109
)
discrepancy. The source

must balance the annihilation term at equilibrium yet be several orders of magnitude
larger during proton decoupling. As above, new physics at this low scale having such
large effect would likely have been detected.

• ⟨σv⟩ is a constant: Same concern as above. Thermal effects are known and can
be computed in QFT; at these low scales they typically yield only O(1) corrections.

9Exceptions via clever or exotic model building do exist, typically with sectors extending beyond the SM.
Mesogenesis is one such example.
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• xf ∼ 10: From Eq. (3.76), explaining an O
(
109
)
discrepancy would require xf ≡

TQCDPT

Tf
→ 1010. Since the relevant scale cannot exceed TQCDPT, this implies ex-

tremely late decoupling, Tf ∼ O(0.01 eV), near the era of first star formation. With
protons non-relativistic, their equilibrium density would remain exponentially sup-
pressed until then, leaving the universe too dilute to support life.

• Initial particle-antiparticle symmetry: As Arthur Conan Doyle put it, “When
you have eliminated all which is impossible, then whatever remains, however improb-
able, must be the truth.” Contrary to the assumption of initial symmetry, there must
be a built-in proton–antiproton asymmetry. Thus, baryogenesis must have occurred
before proton freeze-out.

3.8 Big Bang nucleosynthesis

1. The decoupling condition is

Γ(Tdec) ≈ H(Tdec). (3.84)

Recall that the weak interaction rate is approximately (cf. Eq. (3.58) of the textbook)

Γν(T ) ≈ G2
FT

5, (3.85)

and the Hubble rate is (cf. Eq. (3.55) of the textbook)

H =

√
π2g∗
90

T 2

MPl

=

√
4π3Gg∗

45
T 2. (3.86)

Approximating Tf ≈ Tdec, we have

Tf =

(
4π3Gg∗

45G4
F

) 1
6

. (3.87)

From Eq. (3.120) of the textbook, (
nn

np

)
eq

= e−Q/T . (3.88)

The later (earlier) decoupling occurs—that is, the lower (higher) the freeze-out tem-
perature Tf—the longer (shorter) the neutron–proton ratio tracks its equilibrium value,
leading to a smaller (larger) ratio. Since neutrons are either incorporated into deuterium
(and subsequently helium) or decay, fewer (more) neutrons implies less (more) deuterium
and thus a lower (higher) final helium abundance.

In summary: lower/higher Tf → smaller/larger neutron–proton ratio →
lower/higher final helium abundance.
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2. Recall Eq. (3.138) of the textbook,(
nD

np

)
eq

≈ η

(
T

mp

)3/2

eBD/T . (3.89)

Nucleation at Tnuc occurs when this ratio becomes of order one,
(

nD

np

)
eq

∼ 1, and is

therefore effectively independent of η. Nevertheless, a larger (smaller) baryon-to-photon
ratio η shifts Tnuc higher (lower), meaning neutrons have less (more) time to decay. From
Eq. (3.133) of the textbook,

Xn(t) = X∞
n e−t/τn , (3.90)

this leads to a larger (smaller) neutron abundance Xn, which allows more (less) deuterium
to form, and consequently more (less) final helium.

In summary: larger/smaller baryon-to-photon ratio η → more/less deuterium →
larger/smaller final helium abundance.

3. Recall Eq. (3.87) and Eq. (3.88):

• g∗:

Larger g∗ → higher Tf → higher final helium abundance.

• GF :

Smaller GF → higher Tf → higher final helium abundance.

• G:

Larger G → higher Tf → higher final helium abundance.

• Q:

Larger Q → smaller
(

nn

np

)
at freeze-out → lower final helium abundance.

• τn: From Eq. (3.133) of the textbook,

Xn(t) = X∞
n e−t/τn (3.91)

Shorter τn → smaller neutron abundance Xn → less deuterium formed →
lower final helium abundance.

• µν :

As discussed in Problem 3.3, larger µν → higher final helium abundance.
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Cosmological Inflation

Exercise 4.1

Simply taking derivative directly onto the Eq. (4.25) of the textbook:

dΩk

dN
= (1 + 3w)Ωk −

Ωk,ie
(1+3w)N

[(1− Ωk,i) + Ωk,ie
(1+3w)N ]2

Ωk,i(1 + 3w)e(1+3w)N

= (1 + 3w)Ωk(1− Ωk) .

(4.1)

Exercise 4.2

4.1 Oscillating scalar field

•

•
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Appendix A

Elements of General Relativity

Exercise A.1

For µ = 0,
∂νF

0ν = ∂tF
00 + ∂iF

0i = 0 + ∂iE
i ≡ ∇ · E = ρ = J0. (A.1)

For µ = i,

∂νF
iν = ∂tF

i0 + ∂jF
ij = −∂tE

i + ϵijk∂jBk ≡ (∇×B)i − ∂tE
i = Ji, (A.2)

Thus,

∂νF
µν = Jµ . (A.3)

Exercise A.2

We adopt natural units (ℏ = c = 1), so that Eq. (A.28) from the textbook becomes

E =
hc

λ
=

2πℏc
λ

=
2π

λ
(A.4)

In the lab frame, where the photon is emitted, its four-momentum can be written as

P µ = (E, px, 0, 0), (A.5)

with E = px for a photon.
Now consider an observer moving with velocity v relative to the lab frame, in a direction

making an angle θ with respect to the x-axis. Performing a Lorentz transformation, the photon
energy in the observer’s frame is

E ′ = γ(E − v cos θ px) = γE(1− v cos θ). (A.6)

Hence, the photon wavelength in the observer’s frame transforms as

2π

λ′ =
2πγ(1− v cos θ)

λ
, (A.7)

or equivalently,

λ′

λ
=

1

γ(1− v cos θ)
=

√
1− v2

1− v cos θ
. (A.8)
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Derivation of Eq. (A.62) (Geodesic Equation)

To derive the geodesic equation, Eq. (A.62) of the textbook,

d2x

dτ 2
+ Γµ

αβ

dxα

dτ

dxβ

dτ
= 0 (A.9)

from the extremization of the action, Eq. (A.61) of the textbook,

S[xµ(λ)] = −m

∫ 1

0

dλ

√
−gµν

dxµ

dλ

dxν

dλ
, (A.10)

We proceed as follows. Consider a small variation of the path: xµ → xµ + δxµ. The variation
of the action is

δS ≡ S[xµ + δxµ]− S[xµ]

= m

∫ 1

0

dλ
1

2L

(
δgµν

dxµ

dλ

dxν

dλ
+ gµν

dδxµ

dλ

dxν

dλ
+ gµν

dxµ

dλ

dδxν

dλ

)
= m

∫ 1

0

dλ
1

2L

(
δgµν

dxµ

dλ

dxν

dλ
+ 2gµν

dxµ

dλ

dδxν

dλ

)
,

(A.11)

where L2 = −gµν
dx

µ

dλ
dx

ν

dλ
=
(
dτ
dλ

)2
. Changing variables from λ to τ , we get

δS = m

∫
dτ

(
dλ

dτ

)
1

2L

(
δgµν ẋ

µẋνL2 + 2gµν ẋ
µδẋνL2

)
= m

∫
dτ

1

2

(
∂αgµν ẋ

µẋνδxα − 2
d

dτ
(gµν ẋ

µ)δxν

)
= m

∫
dτ

(
1

2
∂αgµν ẋ

µẋνδxα − ∂αgµν ẋ
αẋµδxν − gµν ẍ

µδxν

)
= −m

∫
dτ

(
gµν ẍ

µδxν − 1

2
∂αgµν ẋ

µẋνδxα +
1

2
∂αgµν ẋ

αẋµδxν +
1

2
∂µgαν ẋ

αẋµδxν

)
= −m

∫
dτ

[
gµν ẍ

µ +

(
−1

2
∂νgαβ +

1

2
∂αgβν +

1

2
∂βgαν

)
ẋαẋβ

]
δxν

= −m

∫
dτgµν

(
ẍµ + Γµ

αβẋ
αẋβ
)
δxν ,

(A.12)

where ẋµ ≡ dx
µ

dτ
. Since this integral must vanish for arbitrary variations δxν , the integrand

must vanish identically, yielding the geodesic equation. Note also that the metric tensor gµν ,
being a geometric property of the manifold, does not explicitly depend on the parameter λ.

Exercise A.3

Show that the Christoffel symbol transforms as

Γ′µ
λν =

∂x′µ

∂xρ

∂xσ

∂x′λ
∂xη

∂x′ν Γ
ρ
ση +

∂x′µ

∂xη

∂2xη

∂x′λ∂x′ν

= Sµ
ρ(S

−1) σ
λ (S−1) η

ν Γρ
ση + Sµ

η (S
−1) ρ

λ ∂ρ(S
−1) η

ν .

(A.13)
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We begin from the definition of the Christoffel symbols in the primed coordinates:

Γ′µ
λν =

1

2
g′µα(∂′

λg
′
να + ∂′

νg
′
λα − ∂′

αg
′
λν)

=
1

2
Sµ

ρS
α
βg

ρβ

{
(S−1) σ

λ ∂σ
[
(S−1) η

ν (S−1) γ
α gηγ

]
+ (S−1) η

ν ∂η
[
(S−1) σ

λ (S−1) γ
α gσγ

]
− (S−1) γ

α ∂γ
[
(S−1) σ

λ (S−1) η
ν gση

]}
.

(A.14)

Focusing on the terms where derivatives act only on the metric tensor (i.e., the tensorial
part), we find:

Tensorial part =
1

2
Sµ

ρS
α
βg

ρβ

{
(S−1) σ

λ (S−1) η
ν (S−1) γ

α gηγ,σ + (S−1) η
ν (S−1) σ

λ (S−1) γ
α gσγ,η

− (S−1) γ
α (S−1) σ

λ (S−1) η
ν gση,γ

}
=

1

2
Sµ

ρg
ρβ
[
(S−1) σ

λ (S−1) η
ν δγβgηγ,σ + (S−1) η

ν (S−1) σ
λ δγβgσγ,η − δγβ(S

−1) σ
λ (S−1) η

ν gση,γ
]

=
1

2
Sµ

ρg
ρβ
[
(S−1) σ

λ (S−1) η
ν gηβ,σ + (S−1) η

ν (S−1) σ
λ gσβ,η − (S−1) σ

λ (S−1) η
ν gση,β

]
= Sµ

ρ(S
−1) σ

λ (S−1) η
ν

1

2
gρβ(gηβ,σ + gσβ,η − gση,β)

= Sµ
ρ(S

−1) σ
λ (S−1) η

ν Γρ
ση,

(A.15)

which confirms the expected transformation law for a rank (1, 2) tensor.

The remaining terms, where derivatives act on the coordinate transformation matrices them-
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selves, form the non-tensorial part:

Non-tensorial part =
1

2
Sµ

ρS
α
βg

ρβ

{
(S−1) σ

λ ∂σ
[
(S−1) η

ν (S−1) γ
α

]
gηγ + (S−1) η

ν ∂η
[
(S−1) σ

λ (S−1) γ
α

]
gσγ

− (S−1) γ
α ∂γ

[
(S−1) σ

λ (S−1) η
ν

]
gση

}

=
1

2
Sµ

ρS
α
βg

ρβgηγ

{
(S−1) σ

λ ∂σ
[
(S−1) η

ν (S−1) γ
α

]
+ (S−1) σ

ν ∂σ
[
(S−1) η

λ (S−1) γ
α

]
− (S−1) σ

α ∂σ
[
(S−1) η

ν (S−1) γ
λ

]}

=
1

2
Sµ

ρS
α
βg

ρβgηγ

[
(S−1) σ

λ (S−1) η
ν,σ (S−1) γ

α + (S−1) σ
λ (S−1) η

ν (S−1) γ
α,σ

+ (S−1) σ
ν (S−1) η

λ,σ (S−1) γ
α + (S−1) σ

ν (S−1) η
λ (S−1) γ

α,σ

− (S−1) σ
α (S−1) η

ν,σ (S−1) γ
λ − (S−1) σ

α (S−1) η
ν (S−1) γ

λ,σ

]

=
1

2
Sµ

ρg
ρβgηγ

[
(S−1) σ

λ (S−1) η
ν,σ δγβ + (S−1) η

ν (S−1) γ
λ,β

+ (S−1) σ
ν (S−1) η

λ,σ δγβ + (S−1) η
λ (S−1) γ

ν,β

− δσβ(S
−1) η

ν,σ (S−1) γ
λ − δσβ(S

−1) η
ν (S−1) γ

λ,σ

]

=
1

2
Sµ

η

[
(S−1) σ

λ (S−1) η
ν,σ + (S−1) σ

ν (S−1) η
λ,σ

]

+
1

2
Sµ

ρg
ρβgηγ

[
(S−1) η

ν (S−1) γ
λ,β + (S−1) η

λ (S−1) γ
ν,β

− (S−1) η
ν,β (S−1) γ

λ − (S−1) η
ν (S−1) γ

λ,β

]
=

1

2
Sµ

η

[
(S−1) ρ

λ (S−1) η
ν,ρ + (S−1) ρ

λ (S−1) η
ν,ρ

]
= Sµ

η (S
−1) ρ

λ (S−1) η
ν,ρ ,

(A.16)

as required. In deriving this, we used the identity

Sα
β (S

−1) σ
λ (S−1) γ

α,σ =
∂x′α

∂xβ

∂xσ

∂x′λ
∂2xγ

∂xσ∂x′α =
∂2xγ

∂xβ∂x′λ = (S−1) γ
λ,β , (A.17)

as well as the fact that the metric tensor gηγ is symmetric.
Thus, Eq. (A.93) of the textbook is established:

Γ′µ
λν = Sµ

ρ(S
−1) σ

λ (S−1) η
ν Γρ

ση + Sµ
η (S

−1) ρ
λ (S−1) η

ν,ρ . (A.18)
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Using the provided hint,

(S−1) η
ν,ρ Sν

α = −(S−1) η
ν Sν

α,ρ , (A.19)

and substituting the full transformation into Eq. (A.92) of the textbook:

∇′
λV

′µ = ∂′
λV

′µ + Γ′µ
λνV

′ν

= (S−1) σ
λ Sµ

ν∂σV
ν +

[
(S−1) σ

λ Sµ
ν,σ

]
V ν

+ Sµ
ρ(S

−1) σ
λ (S−1) η

ν Γρ
σηS

ν
αV

α + Sµ
η (S

−1) ρ
λ (S−1) η

ν,ρ Sν
αV

α

= (S−1) σ
λ Sµ

ν

(
∂σV

ν + Γν
σηV

η
)
+
[
(S−1) σ

λ Sµ
ν,σ

]
V ν − Sµ

η (S
−1) ρ

λ (S−1) η
ν Sν

α,ρV
α

= (S−1) σ
λ Sµ

ν∇σV
ν +

[
(S−1) σ

λ Sµ
ν,σ

]
V ν −

[
(S−1) ρ

λ Sµ
α,ρ

]
V α

= (S−1) σ
λ Sµ

ν∇σV
ν ,

(A.20)

as expected as a rank (1, 1) tensor.

Exercise A.4

We begin by evaluating the covariant derivative of a scalar function defined as the contraction
f = WνV

ν . Using the product rule, we have

∇µf = ∇µ(WνV
ν) = ∂µ(WνV

ν) = (∂µWν)V
ν +Wν(∂µV

ν). (A.21)

Alternatively, applying the definition of the covariant derivative directly to the contraction,

∇µf = ∇µ(WνV
ν) = (∇µWν)V

ν +Wν(∇µV
ν) = (∇µWν)V

ν +Wν(∂µV
ν + Γν

µαV
α). (A.22)

Comparing the two expressions, we isolate the covariant derivative of the covectorWν as follows:

(∇µWν)V
ν = (∂µWν)V

ν −WνΓ
ν
µαV

α = (∂µWν −WαΓ
α
µν)V

ν . (A.23)

Since this relation holds for arbitrary V ν , it follows that

∇µWν = ∂µWν − Γα
µνWα . (A.24)

Derivation of Eq. (A.111) (Riemann Tensor)

Consider two geodesics separated by an infinitesimal displacement vector Bµ. The relative
velocity between the geodesics is defined as

V µ ≡ DBµ

Dτ
= Uν∇νV

µ =
dBµ

dτ
+ Γµ

σνU
νBσ, (A.25)

where Uµ = dx
µ

dτ
. The corresponding relative acceleration is given by

Aµ ≡ DV µ

Dτ
= Uν∇νV

µ =
dV µ

dτ
+ Γµ

σνU
νV σ. (A.26)
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Substituting Eq. (A.25) into Eq. (A.26), we find

Aα =
D2Bα

Dτ 2
=

d

dτ

(
dBα

dτ
+ Γα

βγU
βBγ

)
+ Γα

βγU
β

(
dBγ

dτ
+ Γγ

δϵU
δBϵ

)
=

d2Bα

dτ 2
+

dΓα
βγ

dτ
UβBγ + Γα

βγ

dUβ

dτ
Bγ + 2Γα

βγU
β dB

γ

dτ
+ Γα

βγU
βΓγ

δϵU
δBϵ.

(A.27)

Note that
dΓα

βγ

dτ
= U δΓα

βγ,δ, (A.28)

and
dUβ

dτ
= −Γβ

δϵU
δU ϵ, (A.29)

where we have used the fact that Uβ satisfies the geodesic equation. Since (xα+Bα) must also
trace out a geodesic, we write out its geodesic equation:

d2(xα +Bα)

dτ 2
= −Γα

βγ(x
α +Bα)

d(xβ +Bβ)

dτ

d(xγ +Bγ)

dτ
, (A.30)

and subtract the similar one for xα, yielding

d2Bα

dτ 2
= −Γα

βγ,δB
δUβUγ − 2Γα

βγ

dBγ

dτ
Uβ = −Γα

βδ,γB
γUβU δ − 2Γα

βγ

dBγ

dτ
Uβ. (A.31)

Substituting this result into the expression for Aα, we find

Aα = −Γα
βδ,γU

βU δBγ + Γα
βγ,δU

δUβBγ − Γα
βγΓ

β
δϵU

δU ϵBγ + Γα
βγΓ

γ
δϵU

βU δBϵ

= −
(
Γα
βδ,γ − Γα

βγ,δ + Γα
ϵγΓ

ϵ
δβ − Γα

δϵΓ
ϵ
βγ

)
UβU δBγ

= −Rα
βγδU

βU δBγ.

(A.32)

In the local inertial frame of a freely falling observer, Uµ = (1, 0, 0, 0). The relevant component
of the Riemann tensor is then Rα

0γ0. In the static weak-field limit, all time derivatives vanish,
so Γα

0γ,0 = 0. Since the Christoffel symbols arise from derivatives of the metric perturbation
hµν (as ηµν is constant), each Γα

βγ is at least first order in hµν , and we can neglect second-order
terms. Thus, the only surviving term for the Riemann tensor Rα

0γ0 is Γα
00,γ. Then,

d2Bα

dτ 2
= Aα = −Rα

0γ0B
γ = −Γα

00,γB
γ = −Γα

00,iB
i = ∂i

(
1

2
ηαjh00,j

)
Bi. (A.33)

Note d
2
B

0

dτ
2 = 0, and d

2
B

j

dτ
2 = 1

2
∂i∂

jh00B
i = −Bi∂i∂

jΦ, which corresponds precisely to the New-
tonian limit of the geodesic deviation equation.

Proof of Riemann Tensor Identities

• Rµνρσ = −Rνµρσ:

First, note that

Rµνρσ = gµλR
λ
νρσ = gµλ(Γ

λ
νσ,ρ−Γλ

νρ,σ+Γλ
ρδΓ

δ
νσ−Γλ

σδΓ
δ
νρ) = Γµνσ,ρ−Γµνρ,σ+ΓµρλΓ

λ
νσ−ΓµσλΓ

λ
νρ,

(A.34)
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where we introduced the shorthand notation

Γµνσ ≡ gµλΓ
λ
νσ = gµλ

1

2
gλδ(gσδ,ν + gνδ,σ − gνσ,δ) =

1

2
(gσµ,ν + gνµ,σ − gνσ,µ). (A.35)

Now, consider Riemann normal coordinates, in which Γµ
αβ(p) = 0 at a point p. In these

coordinates, the Riemann tensor reduces to

Rµνρσ = Γµνσ,ρ − Γµνρ,σ

=
1

2
(gσµ,νρ + gνµ,σρ − gνσ,µρ − gρµ,νσ − gνµ,ρσ + gνρ,µσ)

=
1

2
(gσµ,νρ − gνσ,µρ − gρµ,νσ + gνρ,µσ),

(A.36)

which is antisymmetric under the exchange µ ↔ ν. Therefore, in Riemann normal coor-
dinates,

Rµνρσ = −Rνµρσ. (A.37)

Since this is a tensor identity, it holds in all coordinate systems.

• Rµνρσ = −Rµνσρ:

Eq. (A.36) is also antisymmetric under interchange of ρ ↔ σ, and hence

Rµνρσ = −Rµνσρ. (A.38)

Since this is a tensor identity, it holds in all coordinate systems.

• Rµνρσ = Rρσµν :

Eq. (A.36) is symmetric under simultaneous swaps µ ↔ ρ and ν ↔ σ, so we also have

Rµνρσ = Rρσµν . (A.39)

Since this is a tensor identity, it holds in all coordinate systems.

• Rµνρσ + Rµρσν + Rµσνρ = 0:

Again using Eq. (A.36), we compute

Rµνρσ +Rµρσν +Rµσνρ =
1

2
(gσµ,νρ − gνσ,µρ − gρµ,νσ + gνρ,µσ

+ gνµ,ρσ − gρν,µσ − gσµ,ρν + gρσ,µν

+ gρµ,σν − gσρ,µν − gνµ,σρ + gσν,µρ)

= 0.

(A.40)

Therefore,

Rµνρσ +Rµρσν +Rµσνρ = 0. (A.41)

Since this is a tensor identity, it holds in all coordinate systems.
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• Bianchi identity:

In Riemann normal coordinates, where the Christoffel symbols vanish and covariant
derivatives reduce to partial derivatives, we again use Eq. (A.36) to obtain

Rµνρσ,λ +Rλµρσ,ν +Rνλρσ,µ =
1

2
(gσµ,νρλ − gνσ,µρλ − gρµ,νσλ + gνρ,µσλ

+ gσλ,µρν − gµσ,λρν − gρλ,µσν + gµρ,λσν

+ gσν,λρµ − gλσ,νρµ − gρν,λσµ + gλρ,νσµ)

= 0.

(A.42)

Since this is a tensor equation, the result holds in all coordinate systems. Therefore, we
have the Bianchi identity:

∇λRµνρσ +∇νRλµρσ +∇µRνλρσ = 0. (A.43)

Proof of ∇σgµν = 0

gµν;σ = gµν,σ − Γα
σµgαν − Γα

σνgαµ

= gµν,σ −
1

2
gαλ
(
gµλ,σ + gσλ,µ − gµσ,λ

)
gαν −

1

2
gαλ
(
gνλ,σ + gσλ,ν − gνσ,λ

)
gαµ

= gµν,σ −
1

2

(
gµν,σ + gσν,µ − gµσ,ν

)
− 1

2

(
gνµ,σ + gσµ,ν − gνσ,µ

)
= 0.

(A.44)

Proof of ∇µRµν ̸= 0

The Ricci tensor is defined as

Rµν ≡ Rλ
µλν . (A.45)

From the Bianchi identity of the Riemann tensor,

∇λRµνρσ +∇νRλµρσ +∇µRνλρσ = 0,

gσλgµρ
(
∇λRµνρσ +∇νRλµρσ +∇µRνλρσ

)
= 0,

∇σRνσ − gσλ∇νRλσ +∇ρRνρ = 0,

∇µRµν =
1

2
∇νR, (A.46)

where R = gµνRµν is the Ricci scalar.

Exercise A.5

gµνδRµν = gµν
(
δΓλ

µν,λ − δΓλ
µλ,ν + δΓλ

λρΓ
ρ
µν + Γλ

λρδΓ
ρ
µν − δΓρ

µλΓ
λ
νρ − Γρ

µλδΓ
λ
νρ

)
. (A.47)
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Suppose we work in Riemann normal coordinates at a point p, so that Γµ
ρν(p) = 0. In this

coordinate system, the variation becomes

gµνδRµν = gµν
(
δΓλ

µν,λ − δΓλ
µλ,ν

)
= gρνδΓλ

ρν,λ − gµνδΓλ
νλ,µ

= ∂µ(g
ρνδΓµ

ρν − gµνδΓλ
νλ)

= ∂µX
µ,

(A.48)

where on the second line, we relabel the dummy indices in the first term as µ → ρ, and in the
second term as µ ↔ ν. On the third line, we again relabel the dummy index λ → µ in the first
term. We also used the fact that in normal coordinates, Γµ

ρν(p) = 0 implies gρν;µ = 0 ⇒ gρν,µ = 0
at the point p. Finally, when we replace the partial derivative with the covariant derivative, this
becomes a tensor identity, and thus it holds in all coordinate systems. Therefore, we conclude:

gµνδRµν = ∇µX
µ, (A.49)

where

Xµ = gρνδΓµ
ρν − gµνδΓλ

νλ. (A.50)

Proof of δ
√
−g = −1

2

√
−ggµνδg

µν

δ
√
−g ≡ δ

√
− det gµν

= −1

2
(
√
−g)−1 δ

(
det gµν

)
= −1

2
(
√
−g)−1 δ

(
elog(det gµν)

)
= −1

2
(
√
−g)−1 δ

(
e− log(det((gµν)

−1))
)

= −1

2
(
√
−g)−1 δ

(
e− log(det(gµν))

)
= −1

2
(
√
−g)−1 δ

(
e−Tr(log(gµν))

)
= −1

2
(
√
−g)−1(−g) δ(Tr(log(gµν)))

= −1

2

√
−gTr(δ(log(gµν)))

= −1

2

√
−g(gµν)−1δgµν

= −1

2

√
−ggµνδg

µν .

(A.51)
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Proof that the Minkowski metric is a solution to the Ein-

stein equations

From Eq. (A.156) of the textbook, the Minkowski metric is given by

gµν =


−1

1
1

1

 . (A.52)

Since all components of the metric tensor are constants, all derivatives vanish, implying that
the Christoffel symbols, which depend on derivatives of the metric, vanish identically:

Γµ
αβ = 0. (A.53)

As a result, the Riemann curvature tensor, which depends on derivatives and products of the
Christoffel symbols, also vanishes. Therefore, the Ricci tensor and the Ricci scalar vanish as
well:

Rµν = 0, R = 0. (A.54)

Consequently, the Einstein tensor reduces to

Gµν = Rµν −
1

2
gµνR = 0. (A.55)

Hence, the Minkowski metric is indeed a solution of the vacuum (Tµν = 0) Einstein equations.

Proof that the Schwarzschild metric is a solution to Ein-

stein equations

From Eq. (A.157) of the textbook, the Schwarzschild metric is given by

gµν =


−
(
1− 2GM

r

) (
1− 2GM

r

)−1

r2

r2 sin2 θ

 . (A.56)

Since the metric is diagonal, any Christoffel symbol Γµ
αβ with µ ̸= α ̸= β vanishes identically.

The non-vanishing Christoffel symbols are:

Γt
tr = Γt

rt = −Γr
rr = − GM

2GMr − r2
,

Γr
tt =

GM(−2GM + r)

r3
,

Γr
θθ = 2GM − r,

Γr
ϕϕ = (2GM − r) sin2 θ,

Γθ
rθ = Γθ

θr = Γϕ
rϕ = Γϕ

ϕr =
1

r
,

Γθ
ϕϕ = − cos θ sin θ,

Γϕ
θϕ = Γϕ

ϕθ = cot θ.

(A.57)
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By spherical symmetry, components of the Ricci tensor that mix angular and radial or time
coordinates, which imply a preferred angular direction, vanish:

Rtθ = Rtϕ = Rrθ = Rrϕ = Rθϕ = 0, (A.58)

along with their symmetric counterparts.
Moreover, since no component of the metric depends on time, the spacetime exhibits time

translation invariance. Hence,
Rrt = Rtr = 0. (A.59)

The potentially non-zero components of the Ricci tensor are therefore Rtt, Rrr, Rθθ, and
Rϕϕ. We compute them explicitly:

• Rtt:

Rtt = Γλ
tt,λ − Γλ

tλ,t + Γλ
λρΓ

ρ
tt − Γρ

tλΓ
λ
tρ

= Γr
tt,r + (Γt

tr + Γr
rr + Γθ

θr + Γϕ
ϕr)Γ

r
tt − Γt

trΓ
r
tt − Γr

ttΓ
t
tr

= Γr
tt,r + (2Γr

rr + Γθ
θr + Γϕ

ϕr)Γ
r
tt

= 2GM

(
3GM − r

r4

)
− 2GM

(
3GM − r

r4

)
= 0,

(A.60)

• Rrr:

Rrr = Γλ
rr,λ − Γλ

rλ,r + Γλ
λρΓ

ρ
rr − Γρ

rλΓ
λ
rρ

= Γr
rr,r − Γt

rt,r − Γr
rr,r − Γθ

rθ,r − Γϕ
rϕ,r + (Γt

tr + Γr
rr + Γθ

θr + Γϕ
ϕr)Γ

r
rr

− (Γt
rt)

2 − (Γr
rr)

2 − (Γθ
rθ)

2 − (Γϕ
rϕ)

2

= −2GM
GM − r

r2(2GM − r)2
+

2GM

r2(2GM − r)
− 2(GM)2

r2(2GM − r)2

= 0,

(A.61)

• Rθθ:

Rθθ = Γλ
θθ,λ − Γλ

θλ,θ + Γλ
λρΓ

ρ
θθ − Γρ

θλΓ
λ
θρ

= Γr
θθ,r − Γϕ

θϕ,θ + (Γt
tr + Γr

rr + Γθ
θr + Γϕ

ϕr)Γ
r
θθ − Γr

θθΓ
θ
θr − Γθ

θrΓ
r
θθ − (Γϕ

θϕ)
2

= −1 +
1

sin2 θ
+

2

r
(2GM − r)− 2

r
(2GM − r)− cot2 θ

= 0,

(A.62)

• Rϕϕ:

Rϕϕ = Γλ
ϕϕ,λ − Γλ

ϕλ,ϕ + Γλ
λρΓ

ρ
ϕϕ − Γρ

ϕλΓ
λ
ϕρ

= Γr
ϕϕ,r + Γθ

ϕϕ,θ + (Γt
tr + Γr

rr + Γθ
θr + Γϕ

ϕr)Γ
r
ϕϕ + Γϕ

ϕθΓ
θ
ϕϕ − Γr

ϕϕΓ
ϕ
ϕr − Γθ

ϕϕΓ
ϕ
ϕθ − Γϕ

ϕrΓ
r
ϕϕ − Γϕ

ϕθΓ
θ
ϕϕ

= Γr
ϕϕ,r + Γθ

ϕϕ,θ − Γϕ
ϕθΓ

θ
ϕϕ

= − sin2 θ − cos2 θ + sin2 θ + cot θ cos θ sin θ

= 0.

(A.63)
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Since the Ricci tensor Rµν is symmetric, it has 10 independent components. We have
explicitly computed all independent components and verified that each vanishes. Therefore,
the Ricci scalar also vanishes:

R = gµνRµν = 0. (A.64)

Thus, the Schwarzschild metric indeed satisfies the vacuum (Tµν = 0) Einstein field equa-
tions:

Gµν = Rµν −
1

2
gµνR = 0. (A.65)

Proof that the de Sitter metric is a solution to Einstein

equations

From Eq. (A.158) of the textbook, the de Sitter metric is given by

gµν =


−
(
1− r

2

R
2

)
(
1− r

2

R
2

)−1

r2

r2 sin2 θ

 . (A.66)

Since the metric is diagonal, any Christoffel symbol Γµ
αβ with µ ̸= α ̸= β vanishes identically.

The non-vanishing Christoffel symbols are:

Γt
tr = Γt

rt = −Γr
rr =

r

r2 −R2 ,

Γr
tt =

r3 − rR2

R4 ,

Γr
θθ = −r +

r3

R2 ,

Γr
ϕϕ =

r(r2 −R2) sin2 θ

R2 ,

Γθ
rθ = Γθ

θr = Γϕ
rϕ = Γϕ

ϕr =
1

r
,

Γθ
ϕϕ = − cos θ sin θ,

Γϕ
θϕ = Γϕ

ϕθ = cot θ.

(A.67)

Again, like the case of the Schwarzschild metric, spherical symmetry and time translation
invariance imply:

Rtr = Rtθ = Rtϕ = Rrθ = Rrϕ = Rθϕ = 0, (A.68)

as well as their symmetric counterparts. The only potentially non-vanishing components of
the Ricci tensor are Rtt, Rrr, Rθθ, and Rϕϕ. The structure of the computation mirrors the
Schwarzschild case, as both metrics are time-independent, spherically symmetric, diagonal,
and radially dependent.
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• Rtt:

Rtt = Γλ
tt,λ − Γλ

tλ,t + Γλ
λρΓ

ρ
tt − Γρ

tλΓ
λ
tρ

= Γr
tt,r + (Γt

tr + Γr
rr + Γθ

θr + Γϕ
ϕr)Γ

r
tt − Γt

trΓ
r
tt − Γr

ttΓ
t
tr

= Γr
tt,r + (2Γr

rr + Γθ
θr + Γϕ

ϕr)Γ
r
tt

=
3r2 −R2

R4 +

(
− 2r

r2 −R2 +
2

r

)
r3 − rR2

R4

=
3(r2 −R2)

R4 ,

(A.69)

• Rrr:

Rrr = Γλ
rr,λ − Γλ

rλ,r + Γλ
λρΓ

ρ
rr − Γρ

rλΓ
λ
rρ

= Γr
rr,r − Γt

rt,r − Γr
rr,r − Γθ

rθ,r − Γϕ
rϕ,r + (Γt

tr + Γr
rr + Γθ

θr + Γϕ
ϕr)Γ

r
rr

− (Γt
rt)

2 − (Γr
rr)

2 − (Γθ
rθ)

2 − (Γϕ
rϕ)

2

=

(
− 1

r2 −R2 +
2r2

(r2 −R2)2

)
+

2

r

(
−r

r2 −R2

)
− 2

(
r

r2 −R2

)2

= − 3

r2 −R2 ,

(A.70)

• Rθθ:

Rθθ = Γλ
θθ,λ − Γλ

θλ,θ + Γλ
λρΓ

ρ
θθ − Γρ

θλΓ
λ
θρ

= Γr
θθ,r − Γϕ

θϕ,θ + (Γt
tr + Γr

rr + Γθ
θr + Γϕ

ϕr)Γ
r
θθ − Γr

θθΓ
θ
θr − Γθ

θrΓ
r
θθ − (Γϕ

θϕ)
2

= −1 +
3r2

R2 +
1

sin2 θ
− cot2 θ

=
3r2

R2 ,

(A.71)

• Rϕϕ:

Rϕϕ = Γλ
ϕϕ,λ − Γλ

ϕλ,ϕ + Γλ
λρΓ

ρ
ϕϕ − Γρ

ϕλΓ
λ
ϕρ

= Γr
ϕϕ,r + Γθ

ϕϕ,θ − Γϕ
ϕθΓ

θ
ϕϕ

=
3r2 sin2 θ

R2 − sin2 θ − cos2 θ + sin2 θ + cot θ cos θ sin θ

=
3r2 sin2 θ

R2 .

(A.72)

The Ricci scalar R is then

R = gµνRµν = gttRtt + grrRrr + gθθRθθ + gϕϕRϕϕ =
3

R2 +
3

R2 +
3

R2 +
3

R2 =
12

R2 (A.73)

The Einstein tensor Gµν is hence also diagonal, and its non-vanishing components are:

65



Appendix A. Elements of General Relativity

• Gtt:

Gtt ≡ Rtt −
1

2
gttR =

3(r2 −R2)

R4 − 6

R2

(
r2 −R2

R2

)
= −3(r2 −R2)

R4 = Λ
r2 −R2

R2 = −Λgtt,

(A.74)

• Grr:

Grr ≡ Rrr −
1

2
grrR = − 3

r2 −R2 − 6

R2

(
R2

R2 − r2

)
=

3

r2 −R2 = Λ
R2

r2 −R2 = −Λgrr,

(A.75)

• Gθθ:

Gθθ ≡ Rθθ −
1

2
gθθR =

3r2

R2 − 6

R2 r
2 = −3r2

R2 = Λr2 = −Λgθθ, (A.76)

• Gϕϕ:

Gϕϕ ≡ Rϕϕ −
1

2
gϕϕR =

3r2 sin2 θ

R2 − 6

R2 r
2 sin2 θ = −3r2 sin2 θ

R2 = Λr2 sin2 θ = −Λgϕϕ,

(A.77)

where we used the definition R2 ≡ 3/Λ.
Hence,

Gµν = −Λgµν (A.78)

Therefore, the de Sitter metric indeed solves the vacuum (Tµν = 0) Einstein equation with a
positive cosmological constant Λ > 0:

Proof that the anti-de Sitter metric is a solution to Ein-

stein equations

The calculation is identical to the case of the de Sitter metric. One can simply perform the
replacement R2 → −R2. With this substitution, all intermediate steps and final expressions
carry over directly, and the entire derivation remains unchanged.
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