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Part 1

Field theory



Chapter 1

Microscopic Theory of Radiation

This chapter does not include any problems.



Chapter 2

Lorentz invariance and second
quantization

2.1

e Oth order:

For v = 0, the transformations are simply

T — g, (2.1)
t— .

It is trivially true that t* — z* = 5 — xf is preserved.

e 1st order:

At (’)(vl) order, we start from x — zy + dx; and t — ¢, + dt;, where we already know
that dx; = vt,. By assumption, 6t; is of order (’)(vl). Since the transformation must

2

2 2 2 .
preserve t° — x” = tj — xy, we obtain

t*— 2 — t(Q) + 2ty0t, — ZL‘(2) — 2uzpty = t% - I(Q)

2Ux0t0
2,

—— (Stl = = VX, (23)

where terms of order (’)(v2) or higher are neglected.

e 2nd order:

Proceeding to (9(212), we set

T — Ty + vty + 0o,
t— to +UIO + (Stg,
where dz, and dt, are of order (’)(02). Substituting into the invariant quantity,
2 — 2 =ty + v xf 4 2uapty + 20ty — x5 — V2t — 2urgty — 2x00Ty = to — T

— 2(1’061)2 — to(stQ) - U2(l’g - tg), (26)



Chapter 2. Lorentz invariance and second quantization

where terms of order (’)(03) or higher are neglected. As we assume dx, and dt, are both
linear in xy and t,, and of order (’)(1}2)7 the only consistent solution is

1

dxy = 51)21'0, (2.7)
1

6t2 = §U2t0. (28)

e The expansion of —A— = (1 — UQ)_% follows as
1-v

1 3
1+§'U2+§'U4+...,

leading to the approximations valid for v < 1

x + vt

L o
r — =r4uvt+ -vr+... (2.9)
V1-v° 2

t+vx
t—

L 5
——=ttvr+ vt+.... (2.10)
V11— 2

These results are consistent with the perturbation expansions derived above, matching
order by order in powers of v.

2.2

(a) At the CM frame (which, for the LHC, also coincides with the lab frame), each of the two
colliding protons has an energy of £, = 7 TeV. Given that m, ~ 0.938 GeV < E,,, we find

Yy = Ep

3

2

V=
Clearly, the quantity 2m—”

2 2
/ m m
v=4[l- =S =x1-—5. (2.11)
E, 2F,
2
light:

oz Tepresents the deviation of the proton’s speed from the speed of
p

2
2%’2 ~898x 107 ¢~ 2.69 ms ' =9.68 kmh™"|, (2.12)
p

where I include a factor of the speed of light ¢ = 299792458 ms™" to restore the correct
dimension of velocity.



Chapter 2. Lorentz invariance and second quantization

(b) Consider the rest frame of proton 1. The lab frame moves with velocity v;,, = v relative
to proton 1’s rest frame, where v is given by Eq. (2.11]). Proton 2, meanwhile, moves with
speed vy 4, = v relative to the lab frame.

Applying the collinear velocity addition formula,

SN

2 — 4

Vigh + V214 2 m
vy = b T2 2Y S0l 2 ~1= (2.13)

L4 Upogey 1407 14+1— P E,

&,I B

Ep

Thus, one proton is moving at nearly the speed of light ¢ relative to the other.

2.3

(a) From Eq. (1.6) of the textbook, we know that the total energy of CMB photons in the
universe is given by

%4 o) E3
Eoup. o = — | ————dE. 2.14
CMB, tot 7T2 /[) egE _1 ( )

On the other hand, the total energy is also related to the number density by

Eovs = | n(E)EdE, (2.15)
0

where n(FE) is the number density of photons as a function of energy. The total number of
CMB photons in the universe is given by

0
Comparing Eq. (2.14]) with Eq. (2.15), we conclude

0o Vv 00 E2
0 ™ Jo €7 —1

We can then calculate the average energy (Ecyg) of CMB photons as

ECMB tot 0
Eoyp) = e
< CMB> NCMB, tot foo Jokd dE

1.[0 efl

SR
b2 flde (2.18)

_ 10(4)¢(4)

BT(3)¢(3)

t 1

~ 3knyTl o

SkpTems X g5 % 1505
=16.35 x 107 eV |,




Chapter 2. Lorentz invariance and second quantization

where I redefine the variable ¢ = S F in the second line and use the property of the Riemann

zeta function,
1 00 I’S_l
= dx.
= [

Also, T used ((4) = g—g, and ((3) ~ 1.202. In the following, I shall denote (Eqyg) simply
as ECMB'

To find the threshold energy for pion production, we consider the lab frame as where the
initial proton and the initial photon are collinear and head-on. We set

pp,i = (Epaﬁp)a (219)
by = (ECMBaﬁ'y)a (220)

where |p,| = Ecyp. In the CM frame, the final pion and proton are at rest:

Pp.s = (my, 0), 2.21)
Pr = (Mg, 0). (2.22)

Note that the four-momentum in the initial and final states above are not measured in the
same frame. However, the squared sum of four-momenta, i.e., the invariant mass squared,
is a Lorentz scalar, so we can evaluate it in either frame. Thus,

(pp,i + p'y)2 = (pp,f + pw)Q
my + 2 (EcypE, — |5,||5,| cos0) = m2 +m3 + 2m,m,, (2.23)

m; + 2ECMB(EP + ’ﬁp’) = mlz, -+ mi + Qmpmﬂ.,

where I have used the four-momentum conservation in the first line, the initial proton and
CMB photon collide head-on (cosf = cosm = —1) and that |p,| = Ecyp. Given that

m, ~ 0.938 GeV and |p,| = \/Ei — mf,, the threshold energy is then derived by

2
2 5 77”L7T—i-27”npm,T
E,+\/E, —m, = —F——

2EcmB
m2 + 2m,m ’ m2 + 2m,m
El—mi=FEo+ | — T 2 (- _—PT
2Ecus 2EcyB (2.24)
B mi +2mym, mf,ECMB
" 4Ecyp m2 + 2mym,

1.07 x 10' GeV|.

Q

The proton-pion system has an invariant mass of M;,, = m, + m,. In the lab frame, the
total energy of this system is Ey = E, + Ecyp due to energy conservation. To find the
relative velocity between the CM frame and the lab frame, we calculate the Lorentz factor
~ that relates the two frames as

Eiw  E,+ Ecus

= Minv N mp+m7r

(2.25)
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Since the outgoing proton is at rest in the CM frame, this is also the Lorentz factor of the
outgoing proton in the lab frame. Thus, in the lab frame, its energy is

E,;=vm,=—"—"""m =935 x 10" GeV|. (2.26)

24

, the transformation Y is indeed a Lorentz transformation. It can be achieved by first
performing a spatial rotation of an angle § = 7 around the y-axis, followed by the parity
transformation P:

R, (7
(t,x,y,2) RGN (t,—z,y,—2) L (t,x, —y, 2). (2.27)
Since the group product (Y = P o R, (m)) is closed, Y is also an element of Lorentz group, i.e.,

a Lorentz transformation. Because it can be generated by other group generators, we do not
treat it as an independent discrete Lorentz transformation alongside P and T

2.5

(a) The energy range of X-rays is approximately O(0.1) — O(100) keV, which is much greater
than the typical ionization energy of an electron in most crystals (i.e., O(1) — O(10) eV).
Therefore, the electron can essentially be treated as free.

(b) The initial electron is at rest, and we apply four-momentum conservation:

Pe + Dy =D+,
P2 = (pe+p, — 1)’
m? =m?+2p, - p, — 2p. - Pl — 2p, - Pl
0=m.E, —m.E, — E E/(1—cosb)

E
E, = D
1+ (1 —cosf)
f
fl = 7 , (2.28)
Lt 7:]22(1 — cosf)

where primes denote final-state variables, and @ is the scattering angle between the initial
and final photons. I also insert Planck’s constant h and the speed of light ¢ in the final
form to restore the correct dimensions. The plot is shown in Fig. [2.1]

(c) From Eq. (2.28), as m, — 0, f, — 0, except when 6§ = 0. At this angle, the photon’s
frequency—and consequently, its energy—remains unchanged, and no interaction occurs
between the photon and the electron. Note that a massless particle cannot be at rest in any
reference frame, meaning the previous derivation is not valid in this limit (technically, one

should really think the limit E. /m, > 1).

7



Chapter 2. Lorentz invariance and second quantization

z4x1o”f
2.3x10"}
- 2.2x10%0"
z1x1o“i

2.0x10"}

Scattered Frequency f' (Hz)

1.9x10"°"

1.8x10"

o
Lk

15F
N

|

Scattering Angle 6 (rad)

Fig. 2.1: The y-axis represents the scattering frequency f’, while the z-axis represents the
scattering angle 6. The initial photon energy is fixed as E, = 100 keV

(d) Classically (i.e., if the photon momenta is not quantized), the frequency of the outgoing
radiation is identical to that of the incoming radiation, and the distribution is simply a
constant line. This can be seen by taking the & — 0 limit in Eq. (2.28). The classical
physical picture, which you might recall from your E&M class, is the incoming radiation
induces the electron to oscillate at the same frequency as the radiation. The oscillation of
the electron then releases away radiation at the same frequency. Hence, f, = f;

2.6

/ h dk"5(k* — m*) (k") = / h dk°5((K°)? — w)O (k)

e 0 0
:/ dkoé(k; wy,) +6(k +w’“)@(k:°)
— 0 2(.Uk (2 29)
:/"Odkoé(ko—wk) '
0 2wy,
|1
- 2wk ’

where I used the identity d(g(x)) = >, %, in which ¢ runs over all roots of the argument

8



Chapter 2. Lorentz invariance and second quantization

of the delta function g(z).

Recall from Eq. (2.11) of the textbook, the Lorentz transformation A is defined by
AT gA = g. (2.30)
Taking the determinant of both sides,
det (ATnA> =detn
(det A)*detn = detn
|det A| =1, (2.31)
where I used detn = —1.
A coordinate transformation induces a change in the integration measure according to
A’k - - dk" = | det J|dk" dk" - - - dk" (2.32)

where J is the Jacobian of the transformation. Since a Lorentz transformation is itself a
coordinate transformation, the Lorentz transformation matrix A is nothing but the Jacobian
J. Hence,

d'k = |det A|ld'K = d'K'|. (2.33)

Therefore, the measure d*k is trivially Lorentz invariant.

Side Remark: In a curved Spacetimdn], the metric g varies from point to point, and

no global Lorentz transformation A can satisfy AT gA = ¢’ universally. Nevertheless,
the Einstein equivalence principle guarantees the existence of a locally flat reference

frame at every point, where the laws of physics reduce to those of special relativity
(i.e. ¢ — n). Hence, a generalization of Eq. (2.31])) becomes

det (AT gA) =detn
(det A)*det g = —1

|det A| = /—detg,, (2.34)

and the generalization of the Lorentz transformation of the differential measure be-

comes
d'k = +/—detg d'K. (2.35)

This is where the y/— det g factor in the Einstein-Hilbert Lagrangian comes from (see
Egs. (8.145), (8.146), and (22.26) of the textbook).

“This is why I intentionally used the Minkowski metric notation 1 in Eq. (2.31)) instead of the
general metric notation g as in the textbook.

d'kS(K* — m*)O (k)

/ % 5 d’k : dk°5(k* — m*)O (k") -

©



Chapter 2. Lorentz invariance and second quantization

by part @ Now,

e The integral measure d'k is Lorentz invariant by part (]EI)
e The function 6(k* — m?) is Lorentz invariant since its argument is a scalar.

e Also, the on-shell condition by the delta function defines a two-sheeted hyperboloid in
k-space, either k, > 0 or k; < 0. However, for a proper orthochronous Lorentz trans-
formation, it’s impossible to transform a point from one sheet to the other. Hence,

the sign of k° is unambiguous and ©(k") is Lorentz invariantﬂ.

As both the integral measure and the integrand are Lorentz invariant, the entire expression
is Lorentz invariant.

2.7

Pt Pt i i i i i i
d.(e ™ ae™ ) = —a'e ™ ae®™ +e " aa'e®™ = e (aa' —d'a)e®™ =e [a, aT] e =1,
(2.37)
i

(b) Notice that when z = 0, e ** ae®™ = a. Using this boundary condition to integrate

Eq. (2.37)), one can obtain

Pt
e ae™ =z+a. (2.38)
Then,
ZCL.‘— ZCL.‘— 7Za1— ZaT ZaT ZCL.‘—

alz) = ae®™ 10) =™ e ae™ |0) =™ (24 a)|0) = ze™ |0) = z|z) . (2.39)

Thus, |z) is an eigenstate of a with eigenvalue [z].

(n| N'|2) = (n|d'a|2)
n{nlz) = zv/n (n — 1]z2)

(n]z) = % (n—1|2) (2.40)

Also, the base case is
1
¢y = (0]2) = (0] ' 0) = (0] (1 + 20’ + 5 (2a")* + ) 0) = 1. (2.41)

Then, by induction,

(n|z)y =¢, = —=|. (2.42)

Vn!

'Recall that when we say something is Lorentz invariant, we really mean it’s invariant under a proper
orthochronous Lorentz transformation.

10



Chapter 2. Lorentz invariance and second quantization

(d)

We will need the following relations:

2

) = T o) o) = S el = 3 L o, (2.43
(z|a|z) =z (z]z) = ze‘z|2, (2.44)
(elalalz) = |2 (2]2) = |26, (2.45)
(z|aa’ |2) = (] (1 + da'a) |z) = (1 + [2*)e” (2.46)
(z|a®|z) = el (2.47)
Then, T
_Glel 1 et 1
on 1 (2] (aa+ a'a’ + aa' +a'a) |2) 1 2 e e
(@) = 2mw (z]2) B 2mw( T2+ ), (249)
Glpl) el )l e
(p) = Gl 5 EE = 5 ), (2.50)
2y W (2] (aa + a'a' — aa’ — a'a) |2) _ MW g
Thus .
Az® = (2*) — (z)* = Dy (2.52)
Ap* = (p%) — (p)* = % (2.53)

and therefore,

ApAz = \/ Az*Ap® = % . (2.54)

Suppose there exists such an eigenstate |3) = 3 b, |n) of a', with a nontrivial eigenvalue
B # 0. Then,

a'[B) = B|B) = Zﬁb ). (2.55)

We also have

a'[B) = b Vn+1ln+1)=> b, vnln), (2.56)

where I have shifted the index in the last step.

Taking the difference of the two expressions Eq. (2.55) and Eq. (2.56), we obtain the
recursion relation

o Val
b= bor g =g (2.57)

11



Chapter 2. Lorentz invariance and second quantization

where the last step follows from induction. However, note that
0=(0]a'|8) = Bby = by =0 (2.58)

Thus, all coefficients b,, = 0, indicating an eigenstate of a' cannot exist.

12



Chapter 3

Classical field theory

, oL oL
ozas:/dx{¢¢ (¢)(“¢) W(S(ayﬁugb)—l—...}

=[5 -2 (agm) -2 (saam) + -]
o[ () + (W o) -0 (%) + |
=552 (agm) ~2 (saam) + -]

i, [(a<%,’f¢>5¢> 2 (5o 00) -0 (52 00) I

The second line is a total derivative and vanishes if one assumes that the fields and their
derivatives vanish at spatial and temporal infinity. The first first line must vanish for arbitrary
variations d¢, which leads to the generalized Euler-Lagrange equation for a Lagrangian of the

form L[¢,0,¢,0,0,0¢,- -]

Eromoall)- e

=0 pq<--<p;

where I have adopted the notation commonly used in General Relativity context: ¢ , .., =

aﬂl o 8/J'z¢

3.2

(a) Lorentz symmetry implies that replacing the scalar field ¢(z*) with ¢((A™")"z")—its form
under a Lorentz-transformed frame—leaves physical observables (like the Lagrangian, the
equations of motion, etc) invariant. For a proper infinitesimal Lorentz transformation, we
can write

A, =08 + W (3.3)

13



Chapter 3. Classical field theory

where w,,, is antisymmetric (see Eq. (10.13) of the textbook for example). To prove this, we

can start from the defining condition for Lorentz transformations (cf. Eq. (2.41)): ATgA =
g. Since the transformation must reduce to the identity for infinitesimal w, we can expand

N9\ = gap
(65 + wW'a)guw (95 +w's) = gas
9as T Waa + Wag = Gap
Wap = ~Wga; (3.4)

where higher orders of w is dropped since we assume it to be infinitesimal. Hence, the
infinitesimal expansion is proven.

Expanding the field to linear order in w,,,, we have
o) = ¢((A7),"a"))
= ¢(z* — wpaa:p)
= ¢(x) — w, 1" 0,0(x)
= §(x) — gg,u " 2 Do () (3.5)
= ¢(z) - (ggpw “2P 00 — gppw ™ 1 0,) 0 ()

where I relabeled p <+ « in the last term in the last line. Then,

56 1 1
m = _§(gﬁpgﬁygauwp8a - gﬁagpugﬁuzaap)qs(x) = §($Va,u - [L’Ma,j)qb(l’) (36)

Since the Lagrangian L itself is also a scalar, it transforms similarly:

oL 1 1

W = E(xuau[' - xuauﬁ) = 5[604(171/9041 - xugau)]‘c' (37)

On the other hand, by invoking the equations of motion, the variation of the Lagrangian
can also be written as

oL n)aa n a‘c 0 n
%: (Za Tw 555#”) _ ( Za a¢n xua,,)gbn>. (3.8)

Equating Eq. (3.7) and Eq. (3.8), we find

[ <Za (0.6, O — ga,u) (Za 00.) Oy — gau>

aa[xl/%u - Iu%l/] = 07 (39)

=0

where 7, is the energy-momentum tensor. Thus, we can identify the conserved currents
as

Ko =2, T0p — 2, T | - (3.10)

14



Chapter 3. Classical field theory

(b)

Given the Lagrangian

1
L=—2o(0+ m*), (3.11)
we calculate the energy-momentum tensor as
Tos = 50,0 Gople = (00)(D0) — 200,07 — "] (3.12)
ap a<aa¢) o a,u « “w ap v .

Note first that the energy-momentum tensor itself is conserved when the equation of motion
of the field is satisfied:

00 Top = 06(0,0) + (020)(00,0) — (0,0,0)(9,¢) + m*(9,0)¢
= 06(9,0) +m*(9,0)¢ (3.13)
=0,
where I invoked the equation of motion of the field [¢ = —m2gb.

Next, we verify the conservation of the Lorentz current K,

aaK,uua = aa[xuﬁlu - x,u7::w] = guanu - gyanu = 7:/,u - 7;1/ =0 ) (314)

where I have used Eq. (3.13)), the identity 0,r, = g,,, and also the fact that the energy-
momentum tensor is symmetric (cf. Eq. (3.12)).

o= / ¢k = / (e Too = 1To0) = / @u(w:€ —tp;) = / 'z, —tP.  (3.15)

Here, £ is the energy density, p; is the momentum density, and P, is the total momentum
of the system. These conserved quantities correspond exactly to the three boost generators
of the Lorentz groupﬂ. Comparing this result directly with Eq. (10.22) of the textbook, one
can observe that these quantities (); are precisely the boost generators L, of the Lorentz
group in momentum space.

From the Heisenberg equation for a conserved charge operator,

dQ; 9Q;
= 1
0= S i H) + £, (3.16)
one readily observes this can be consistent if and only if
9Qs
= : 3.17
i (@, ) (317

If the charge operator is not invariant under the equations of motion (i.e., [@Q;, H] # 0),
the Heisenberg equation still holds. However, in this case, the charge operator has explicit

'From here onward, I will slightly abuse terminology by using the word ”charges” to refer both to the

symmetry group generators themselves and to their eigenvalues (the conserved charges arising from Noether’s
theorem).

15



Chapter 3. Classical field theory

time dependence—it has intrinsic dynamics, which is exactly why it is not an invariant
of the equations of motion. Therefore, although these charges remain conserved (due to
Noether’s theorem), they do not correspond to invariants of the dynamics.

As a concrete example, for the boost generators ); = Ly; we just calculated, explicit time

dependence appears from Eq. (3.15). Applying the Heisenberg equation Eq. (3.17)), one
finds:

[Loi, H] = =il . (3.18)

This is precisely one of the Poincaré algebra relation, where the commutator of a boost
generator in i-th direction and the time-translation operator (the Hamiltonian H) yields the
i-th spatial momentum operator P;,. Physically, this commutation relation indicates that
under a boost transformation, the energy of the system changes (i.e., frame-dependent)
unless the system possesses zero spatial momentum—in that special case, the system’s
energy is exactly its invariant mass.

On the other hand, for rotations, the Poincaré algebra states that the rotation generators
J; commute with the time-translation operator (the Hamiltonian H):

[J,,H] =0]. (3.19)

Therefore, one can define a conserved charge associated with rotations—the spin—which
also remains invariant under the equations of motion. Thus, rotation provides a well-defined
quantum number labeling representations of the full spacetime symmetry — Poincaré group,
while boost can not.

3.3

(a) Let

£'=L+0,X,. (3.20)

Under a spacetime translation, following the textbook treatment, ¢, — ¢, + £70,¢,,, we
compute the variation of the action:

68 = / d'zéL = / d*z[0L + 6(0,X,)] = / d*z[0L + 0,0X,). (3.21)

16



Chapter 3. Classical field theory

Since X, [¢,,,0,¢,] is a functional of the fields ¢,, and fields’ derivatives Gugb,ﬂ its variation

is
0X, 00X,
0X, = —2) ————030 3.22
« Z|:a¢ ¢n (aﬂ¢n) B¢n:|7 ( )

and thus, its functional derivative with respect to the transformation parameter £ becomes

0X 0X, 0X,
— = Z |: = u(bn aﬂ( V¢n>:|

0&” ¢y, 9(95¢,)
B 0X, aX (3.23)
= auXou

which simply follows from the chain rule.

Invoking the equations of motion, we now have

5‘Cl[¢naau¢n] — 6£[¢naa,u¢n] + ) 5Xoc[¢naau¢n]

5¢” 5 5&”
=9, (Z 500,0,) ycbn) + 0,0, X, (3.24)

_a (Za #¢n V¢n+8l/Xp)7

where I have relabeled the dummy indices @ — p in the second term.

Meanwhile, since £ is also a scalar, we expect
oL
o¢”

Equating Eq. (3.24) and Eq. (3.25)), we find

= 0,(L + 9, X,,). (3.25)

Z By n + 0, X, — Gl — Gu0aXa | = 0. (3.26)
a ,ugbn

Side Remark: As a spoiler, the famous 0 term e"**’ F{, Fly = 9" (¢,05(ALFay — 2f*° AL A Aﬁ))
is an example of total derivative on the Lagrangian, Wthh does not contribute to matrlx element in
perturbation theory, but has real physics effect in non-perturbative theory. See, for example, Eq. (7.109),

(29 105), and Eq. (30 89) of the textbook. Also note the functional — the Chern-Simons current
- X Ewap(AvFos — 4 g pabe go gb oAf) of the 6 term indeed depends both on fields as well as fields
derwatwes Also, this chapter is about classical fields, which have no fundamental reasons to argue
X, should not depend on fields derivatives. I have seen many false derivations of this problem assuming
X, depends only on fields, which is not valid in the very first place. In fact, as I showed with chain rule,
the result holds irregardless of how higher-derivatives of the fields 9,05 - - - ¢,, the functional X, depends
on.

17



Chapter 3. Classical field theory

Therefore, the change in the energy-momentum tensor due to adding a total derivative to
the Lagrangian is given by

57;1/ = al/X g,uua X - a (gal/ g,qua) = aozKa,uu ) (327)

where I have written it as a total derivative of an auxiliary tensor K,,,. Note that K,,, is
antisymmetric in its first two indices: o < p.

Evaluating the resulting variation of the total energy,
6Q = / 26Ty

= / dx (0,Xy — 0,X,)

== /d3$€ (atXO — atXO + 8’LXZ)

~ [ o)
/XdA

by divergence theorem and assuming X; are constructed from operators dying fast enough
at spatial infinity.

(3.28)

We first compute
OF 5 0(0,A5)  0(054,)

- - = - : 3.29
9(0,A,)  9(0,4,) 09(0,A,) Jop9pv — 9puJav (3.29)
For the Lagrangian £ = iF 31,, the field equation for A, becomes
oL 1 ar
6”8(8#/11,) - _§8M[Faﬁ(gaug,8u - gal/g,ﬂu)] = —aquj = aAV = O, (330)

where we used the fact that F,, = —F,,.

The canonical energy-momentum tensor is then

oL
Twr = g,y Ot — 9wk
1
- _§Faﬁ<gaugﬁw - gcwgBM)(al’Aw N gu,,ﬁ (3.31)
1
- _§(FM'Y - Fw)(aVAW) — gl

Fua(aVAoz) - g,uuﬁ'

Clearly, the first term of the tensor is not symmetric under p <> v, so we aim to correct
this.

18



Chapter 3. Classical field theory

To symmetrize, we consider the antisymmetric part and require it to vanish after adding
the contribution from 07, given by Eq. (3.27):

0=17,+d,—-T,,—9dT,,
= —F,,(0,A,) + F,0(0,A,) + 00 (Ko — Kouy)

= (0aAy — 0,42)(9,40) + (9,40 — 0,A,)(9,A0) + Oa(Koyw — Kavy)

= (aaAu)(auAa) - (8aAu)(auAa) + 8a(Ka/w - Kal/,u)

= (024,)(0,A0) = (0aA4))(0,40) + (0a4,)(0aA) = (00A))(0aAy) + Ou(Kapw — Kavy)
= Fya(aaAy) + Fau(aaAu) + acx(Kam/ - Kowu)
= 0,(F oA, — F A + Ky — K

" n oa/u)v

(3.32)

where we have used the equation of motion of the fields d,F,,, = 0 from Eq. (3.30) to get
the last line.

Given the antisymmetric property of the first two indices of K, and also the antisymmetric

property of F),,, a natural choice is

Ko = Fluady. (3.33)
The above derivation then ensures cancellation of the antisymmetric parts in the canonical

energy-momentum tensor. After including the divergence of the auxiliary tensor K, the
modified energy-momentum tensor becomes

T/w = _F,ua(auAa) - g;wﬁ + 8aKauV - _Fua(ayAa) - g/w£ + F,ua(aaAV) = FyaFaV - g;w‘c

(3.34)

which is now manifestly symmetric.

Finally, to solve for X, we start from where we introduced the auxiliary tensor and plugging

the explicit form of Eq. (3.33) we just found,

aoz (gasz,u - g;an) = aaKa;w = 804(F,uaAu)
auXu - g,uuaozon - F;wcgozAV' (335)

Now, contracting both sides with g,

aaXa - 4aaXa = g,uyF,uaaaAz/
1 1

aoz)(oz - gFauaaAu = gaoz(FozuAu)
1
Xo = 3FupAy (3.36)

A word of caution however, is that it is important to note that this expression for X, is
obtained through contraction with the metric tensor g,,, and a general inversion to get
such a term in Lagrangian while preserving Lorentz covariance might not exist. Note that
even A" itself is not uniquely determined due to gauge invariance. In fact, what people
usually do is to add the remedy term directly onto the energy-momentum tensor instead
of the Lagrangian. This is totally fine as long as the modification does not spoils the
energy-momentum conservation. It’s the conservation law what really physical.
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Chapter 3. Classical field theory

3.4

Fig. 3.1: The two next-order Feynman diagrams of classical gravity.

The two next-order diagrams are displayed in Fig. [3.1] Reading off the expressions directly
from the diagrams, we have:

ho(z) = — )\2/d4w/d4z/d4u/d4v/d4y (2, w)IL(w, y)IL(w, 2)(z, w)(z,v)J (u)J (v)J (y)
N / d / i / i / i / dty 1z, w)TI(w, 2)T1(w, )Ty, )T (y, )] ()T (0)J(2)

— —2)\2/d4w/d4z/d4u/d4v/d4y Iz, w) I (w, y) I (w, 2)1I(z, u)Il(z,v)J (u)J (v)J (y) | ,
(3.37)

where in the last step we used the fact that y and z are dummy integration variables.
From the Green’s function method, let us write h = hy+ h, + hy, where h, is of order O()\z).
Then, the equation of motion is

I:](ho + hl + h2) - A(hO + hl + h2>2 —J = 0’ (338)
which implies at order (9()\2),

Ohy = 2Ahohy + O (%), (3.39)
Thus, we have
1 1 1 1 /1 1
hy =2XA=(hohy) =2A= || =J | (A= | =J=J . 3.40
=mgin =25 |(57) (5 (575))| 0
Using the two-point Green’s function II = —%, this becomes

ho(z) = —2)\2/d4w/d4z/d4u/d4v/d4y (2, w)I(w, y)IL(w, 2)(z,w)(z,v)J (u)J(v)J (y) |,
(3.41)

which confirms the result obtained directly from the Feynman diagrams.
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Chapter 3. Classical field theory

3.5

(a)

The equation of motion is

O¢ — m*¢ + %qﬁ?’ =0. (3.42)

The constant solutions ¢(z) = ¢ can be found by plugging this back into the equation of
motion,

A
—mPc+ 503 = (3.43)
A A
c|l—m+ \/jc m + \/jc = 0. (3.44)
6 6
6m2
Thus, the constant solutions are and [c =+ % . For these constant configura-

tions, the kinetic term vanishes, so the ground state energy can be determined by evaluating
the potential energy V(¢) = —%mzqﬁQ + %(/54:

Vig=0)=0,V|op==+ 6m* | _ _3m’ 3.45
(‘ﬁ- )- ) o= ~ | T ( )

2
The two solutions ¢ = + 6% correspond to degenerate ground states.

The Z, symmetry transformation ¢ — —¢ maps one ground state to the other. If the
field has a vacuum expectation value (@) = ¢, this transformation changes it as (¢) — —c.
Therefore, the vacuum does not respect the symmetry, unless ¢ = 0.

Consider the field redefinition ¢(z) = ¢ + 7(z). The Lagrangian becomes

C— —%(c (@) On(z) + %mz(c b)) — %(c + (@) (3.46)

The equation of motion for 7(z) is
Or(z) — m*(c+ 7(x)) + %(c +7(z))* = 0. (3.47)
Observe that the terms without m(x) are: —m?’c + %cg =c (—m2 + %) = 0 cancel out,

where we plugged in ¢* = % for either of the degenerate vacua. Thus, w(x) = 0 solves
the equation of motion.

Under the Z, symmetry ¢ — —¢, we have
c+m— —c—m,
T — —m — 2c (3.48)

Since this transformation is really just ¢ — —¢ written in another way, the Lagrangian
for m(z) of course remains invariant. Indeed, explicitly substituting 7 — —m — 2¢ into

Eq. (3-46) gives
A

1 1 2 2 4
L — —5(—0 —m(x))O(—m(x)) + 3m (—c—m(2))” — Z(_C —m(x))" = L. (3.49)
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Chapter 3. Classical field theory

3.6

(a) We have calculated the equation of motion for a massless A, in Eq (3.30). Adding the mass
term and the current term, the equation of motion for A, becomes

o, F,, +m*A, =J,

wt

0A, - 0,0,A, +m*A, = J,,. (3.50)
Taking the derivative 0, on both sides gives

m?*(9,A,) = 0,.J, = 0. (3.51)

Thus, when m # 0, this enforces the Lorenz gauge condition |0,A

(b) The derivation follows exactly as in Eq. (3.61) and Eq. (3.62) of the textbook, with the
substitution 0 — O + m?. Therefore, in Fourier space, we directly find

&’k € ik-7
aor) = [ PR e
e ] 1 2m 1 )
:—3/ dek/ dcose/ dp—5—— ™"
(271') 0 -1 0 k +m
e ) k?2 eikr . efikr

== = dk
12 2 m? ikr (3.52)

00 ]{52 ikr 0 1{32 ikr
== / dh———s — +/ dh——— —
47 0 k% + m” ikr oo kP m”ikr

e /°° kdk .,
= 2. 2 26 )
4r°r J_so k¥ +m

where, in the next-to-last line, we redefined £k — —Fk in the second term.

(c) The integrand has poles at k = £im. For eikr, we need to close the contour in the upper
half-plane, which captures the pole at k = im as m > 0. Evaluating the residue gives

e m
A = i) —————e " = —e " 3.53
olr) 47722'7°( i) m + im© dr© (3:53)

(&

(d) Evidently, in the limit m — 0, this expression recovers the familiar Coulomb potential:

Ao(r) = . (3.54)

- Arr

(e) The Yukawa potential above exhibits a characteristic range given by r ~ % Given that
the typical range of the nuclear force is approximately 1 fm, this suggests that

m~1fm™ =1fm " x (he) = 200 MeV | . (3.55)
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Chapter 3. Classical field theory

(f) Imposing the condition d,A, = 0 directly in the Lagrangian, we find

1 1
L=—1(0,A4, = 0,A,)" + om’ AL = A,

1 R (3.56)
= —5(8#141,) + §m A“ — ANJH
The equation of motion for A, then becomes
(D + m2)Al/ = Ju
@ +m*)(9,4,) =0,J,
0=0. (3.57)

Hence, current conservation is automatically satisfied. Originally, it is the mass term that
effectively serves as a Lagrange multiplier enforcing this constraint. If the mass term is
switched off, the constraint in Eq. (3.51]) reduces to a trivial equality.

3.7

(a) Since the action S = [ d*z £ must be dimensionless in natural units, it follows that [£] = 4.
Examining the kinetic term in the Lagrangian, —%hDh, we find:

2+ O] =[£] =4
20h) +2 =4
] =1]. (3.58)

Considering the second term, (Mp;)*h*Oh, this implies:

a[Mp] + 3[h] + [0] = [£] = 4
a+3+2=4

. (3.59

Moreover, from Eq. (3.35) of the textbook, we know [T'] = [£] = 4. For the third term,
—(Mpl)th, we have:

b[Mp] + [h] + [T] = 4
b+1+4=4
b= _1]. (3.60)

(b) At first order in the source, h") ~ O(T"), the equation of motion reads:

T m
OpY = ——— = ——§%(x),
MPI MPI ( )
1
A () = = L5300, 61
() Mﬁ56@> (3.61)
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Chapter 3. Classical field theory

This has the same structure as the Coulomb potential (cf. Eq. (3.61) in the textbook),
except for a different constant prefactor. Upon Fourier transformation, we obtain:

1
R — _Mﬂm;_ (3.62)

The factor of 47 is absorbed into a rescaling of the gravitational field h(z) to align with
the classical Newtonian potential.

Proceeding to second order in the source, h? ~ O(T2):

1
Oh® = ——0[(")’]
0[],
m? 1
Mp]’f’

(c) Since the classical gravitational force is given by the gradient of the potential, for circular
motion, the orbital frequency w relates to the gravitational potential via (noting that an
extra factor of MLPl on the right hand side is needed to ensure dimensional consistency, since

[w] = [s7"] =1):
) 1 |dn®
a7 [ ar ]
r=R

1 [an®™ m Gym
2 Sun N'T"Sun
W2 = — = 3.64
Mp R | dr e M3 R® R3 (3.64)
wa08x10 s,
(d) The correction to the orbital frequency is:
1 2
dw=—14
= 5167
11 |dh?
2w Mp R | dr .
_ 1 omg,
- ;M§1R4 (3.65)
_ 1Gims,
w R

= |86 arcsec/century

. 2 . .
where we have inserted a factor of 1/¢” to restore dimensions.
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Chapter 3. Classical field theory

(e) Accounting for the influence of other planets:

1
1 1 dh
W= MR d
Wsolar Pl lanets r
planets P T=Rplanets
GN mplanets

=5 D (3.66)

solar planets Rplanets

~4x10 127!

—|2 x 10* arcsec/century

where we approximate the distances between Mercury and the other planets by the plane-
tary orbital radii relative to the Sun.

(f) Both corrections are indeed observable in the case of Mercury, and constitute key exper-
imental tests of general relativity. In fact, at the time of writing, even the analogous
corrections for Venus are detectable. See Ref. [2] for details.

(g) Using the general Euler-Lagrange equations Eq. (3.2)) derived in Problem the equation
of motion for h(zx) reads:

Oh = (Mp,) "' [2h0h + 0O(R%) — T). (3.67)

The additional term is (Mp;)~'2h0h. Since this term is of the same order as (Mp,)'O(h?),
and given our rough order-of-magnitude estimation, both contribute comparably and can
be safely neglected.

3.8

The blackbody radiation paradox essentially argues that if the electromagnetic field is treated
classically, the number of available modes can increase without bound as the frequency grows.
Consequently, the total energy density, when integrated over all modes, becomes infinite. This
divergence can only be avoided if the higher-frequency modes are exponentially suppressed, as
shown in Eq. and Eq. . Therefore, to resolve this issue, the electromagnetic field
must be treated quantum mechanically.

This argument remains valid even when electrons and atoms are described quantum me-
chanically, i.e., with discrete energy levels. Suppose we only quantized the electrons and atoms,
while electromagnetic field remains classical. First note that classically, each mode of the elec-
tromagnetic field carries an energy of ~ kT by the equipartition theorem, regardless of the
frequency. This suggests that, even though the electrons or atoms system is quantized, it is
still capable of emitting radiation at any frequency across all modes. This again leads to a
divergence when integrating over an infinite number of modes.

In principle, the same reasoning applies to gravity. There is a clear analogy between the
electromagnetic and gravitational wave, especially as gravitational wave is now an experimen-
tally verified observation by LIGO and Virgo [3]. However, due to the extremely weak coupling
of gravitational interactions, whether a similar blackbody radiation equivalence can actually be
observed is another matter.
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Chapter 3. Classical field theory

3.
()

9

The Lagrangian iﬂ
1

Ez—fﬁ—%&
1
- _5(@“4”)2 —J,A, (3.68)

1
= SA04, - T4,

where we have imposed the Lorenz gauge condition 8,4, = 0. Referring to Section 3.4 of
the textbook, under the Lorentz gauge, the equation of motion for A, reduces to

0A, = (3.69)
or J
A =l .
& (3.70)

Substituting this back into the Lagrangian Eq. (3.68]), and applying the Fourier space
replacement [ — —k* (cf. Eq. (3.60) of the textbook), we find

1

B (momentum space). (3.71)

In momentum space, the current conservation condition 9,.J, = 0 becomes

ik, - J, =0
i(koJO — kl‘Jl - k'QJQ - k3e]3) — O (372)
Choosing k, = (w, k,0,0), this implies
J= = Jyl. (3.73)
K

(c) Substituting this relation back into the interaction term, we have

, 1 Jody— Iy — Jody — T3
JH_2J# - 2 2
2k 2(w” — k%) (374)
B _J(’)Jo B Jody + J3J5 '
2kt 2w =KD

(d) The first term, which lacks time derivatives (since no w dependence) i.e., no dynamics,

corresponds to Eq. (3.61) of the textbook, describing a stationary point charge at the
origin—namely, the classical Coulomb potential. This term is instantaneous and, as such,
non-causal. The remaining terms, involving time derivatives, describe the two causally
propagating physical degrees of freedom. The poles at w = £k in these terms correspond
to the advanced and retarded solutions of classical electrodynamics.

s likely that the Lagrangian given in Problem 3.9 of the textbook contains a wrong sign in the current

term. This appears inconsistent with, for example, Eq. (3.87) or Eq. (8.98) of the textbook, although the physics
remains unaffected by this sign.
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(e) The instantaneous term represents an unphysical degree of freedom, which can be elimi-
nated by an appropriate choice of gauge. Following the method outlined in Section 8.2 of
the textbook, one can adopt the Coulomb gauge to set J, = 0. Consequently, all physical
observables remain causal, and and no communication faster than the speed of light can
be made.

3.10

(a) The Lagrangian isﬂ
£=-h,0h, +-—"h,T (3.75)
1

The equation of motion for A, is

Oh,, = ——T,,, 3.76
g Mp, " ( )
o 1 T
h,, = ———£-. 3.77
j2274 MPI |:| ( )

Replacing this back to the Lagrangian Eq. (3.75) and applying the Fourier space replace-
ment [ — —k* (cf. Eq. (3.60) of the textbook), we find

L=T, LT

v 2 L (momentum space). (3.78)

(b) Since T, is, by assumption, a symmetric rank-2 tensor, it contains 10 independent com-
ponents in general. Writing this explicitly, we have

1 1 1 1
L= Téo—gToo - T61—2T01 - T62—2T02 - T63—2T03
1 1 1 1 1 1 ’
+ Tl =T + Tlo—5T1o + Tis—5T15 + Tog——5Tho + Tog—5Ths + Ths—Tss.
N5 1273412 1372413 2253122 2373128 3352133
(c) In momentum space, the current conservation condition 9,7}, = 0 becomes
ik, T, =0
i(koTOV — kT, — ko1, — k3T3u) = 0. (3~80)
Choosing k, = (w, k,0,0), we deduce
T, =21, (3.81)
K

which gives four constraints for v = 0,1,2,3. Using the symmetric property of 7, we
similarly have

T

w
ul — ETMO (382)

Tt’s likely that the Lagrangian given in Problem 3.10 of the textbook contains a wrong sign in the kinetic
term. This appears inconsistent with, for example, Eq. (8.128) or Eq. (22.24) of the textbook.
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for £ =0,1,2,3. In particular,

2
w

w
Ty = 1o = —5Too- (3.83)
K K
Substituting these back into the Lagrangian in momentum space, we obtain
4

2 2 2
L Twhe(1-25 1) Tolu(1-%) Tlw(1-%)

2(w? — k%) w® — K w® — K
Too Ty + 2T53Tos + T33T53 334
Z(w2 — 52) (3:84)
/ 2 2 / / / / /
| TooToo (W —K ) TooToe  TosTos — TooToe + 2153155 + T33T53
= 1 t— t—5 + 2 2
2K K K 2(w” — K7)

We identify three apparent causally propagating degrees of freedom (i.e., non-instantaneous
components):

r _ Ty Ty + 2T53Tos + T33T33
causal 2((,02 _ Ii2)

(3.85)

Since the graviton is massless, according to Wigner’s classification, only two physical prop-
agating degrees of freedom should remain. We can reduce the redundant one in Eq. (3.85))
by adding another Lorentz-invariant term to the Lagrangian: cTWk%TW. More concretely,
we add

1
c(Toy+T33+ - ?(Tzz +Ta34--+), (3.86)

where - - - refers to non-causal terms, which we do not care about. The causal part of the
Lagrangian now becomes

(14 2¢)TaToy + 2T53T3 + (1 + 2¢) T3 T35 + 2¢T5y T3z + 2¢T33Th,

Ecausal = 2(w2 — 52) (387)
To eliminate the redundant degree of freedom, we need to set ¢ = —%:
r _ %T2,2T22 + 27535 + %T?:3T33 - %T2/2T33 - %T§3T22
causal 2(w2 — Ii2)
3.88
_ 1(Tag — Ti3)(Toy — T3) + Ta3Tog (3.88)
(w? — K?)

1
Consequently, the two remaining causally propagating degrees of freedom are §(h22 — hs3)

and .
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Old-fashioned perturbation theory
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(a) Retarded case (b) Advanced case

Fig. 4.1: The vertical dashed line indicates the time at which the intermediate state is evaluate.

(a) The diagrams corresponding to the two possible time orderings for process e*e™ — v —

ptp~ are shown in Fig. . For the retarded case, the intermediate photon travels forward
in time. Therefore, the electron pair is annihilated before the muon pair is created. Hence,
the intermediate state consists solely of an on-shell photon with energy

R — — —
ESY = B, =|p,| = |0\ + Pl (4.1)
For the advanced case, the intermediate photon travels backward in time, and the electron
pair is annihilated after the muon pair is created. Hence, the energy of the intermediate
state includes the electron pair, the muon pair, and the on-shell intermediate photon:
E(()A) =F\+E,+ Es+ E,+ E, = Ey + By + By + Ey + |py + pal- (4.2)
III bOth CaseS, we have EZ — El +E2 — Ef — E3 +E4 and E’Y — |ﬁ’}’| — |ﬁ1 +15'2| — |ﬁ3 +ﬁ4|
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Therefore, for the retarded case,

1 B 1 (4.3)
Ei—EéR) El—i—EQ—E,Y ’ .
and for the advanced case,
1 1
- ) (4.4)
E,—E®" |-E3—E, —E,
(b) From part (a)), we have
2 2
TR ¢ ¢
fi ‘" E+E,—-E, -E;—E,—E
¢’ e?
N (Ey + Ey) — E, N (By+ Ey) + E, (4.5)
B 2Ewe2
|2 2
E; — EF

Defining k" = pi + ph = (Ey + Ey, Py + 12) = (E;,p,) as the 4-momentum of the virtual
off-shell photon, we identify k* = E? — ]77\2 = B — Dy +]72’2 = E? — Ei as precisely as
the denominator above.
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Cross sections and decay rates

5.1

From the definition of LIPS (cf. Eq. (5.21) in the textbook), we have

Alips = (2m)'5* (3 p) d'p; 1 dpp 1
LIPS p (27?)3 2E, (27)3 2F;

11
dQ/dpp2——5E + Ep— E; —my),
ffEfEB( f B A)

) (5.1)

167>

where p; = |p}|, and note that pp = p; — Py, implicitly constrained by the integrated-out delta
function. Therefore, p% = p; + p?c — 2p;pscos .
Now, define x(ps) = E; + Ep — E; — m,. Then,

dv dE; dEgdpp Py +pf — p; cos @ _ Egps+ Erpy — Eyp; cost

-— = = 5.2
Substituting this expression back into the LIPS, we obtain
1 > d(z)
dll = —dQ/ dz {p2
LIPS ™ 62 my+Eply o~ Fi-ma fEBpf + Eypy — Epp; cost 53)

1
167>

-1
def {EB+Ef (1—&COSQ):| Q(mf+EB|p2:0—EZ—mA)
Py

Next, we plug this result into Eq. (5.22) of the textbook. Notice that |v; — /4| = |7;| = 2.
Therefore, we find

dU 1 2 1 pz ):|1

— = M|"—— |Eg + E; | 1 — —cos 0 O(ms+ Egly,—o— E; —m
ds (QEZ')(QEA)% | 167 [ b f( Dy psb(my Blpi=0 4)
1

- 647°m 4

-1
{EB + By (1 - % COSQ):| %\M|29(mf + Eply,—0 — E; —my).
f i
(5.4)
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5.2

dk
— J 2E,

Additionally, 6* (3_ p) remains Lorentz invariant because 4-momentum conservation holds true
in all inertial frames. Consequently, since dll;pg consists solely of Lorentz invariant factors,
the entire expression is Lorentz invariant.

In Problem ﬁ, I demonstrated that the integration measure [ 33 is Lorentz invariant.

5.3

(a) We shall work in the rest frame of the decaying muon. Without loss of generality, let
the outgoing electron-neutrino define the z-axis of our reference frame. Starting from the
definition of LIPS (cf. Eq. (5.21) in the textbook), we have

4¢4 dspe d3p,7€ d3pl/,4 1
Mprps = (27)°0 (Zp) (2r)® (27)° (2m)* (2E)(2E, ) (2E.) (5:5)

Integrating over ﬁ,,u via the d-function, the spatial part fixes

ﬁl/ = _(ﬁe +ﬁue)‘ (56)

"
Squaring both sides and using the approximation of massless electron and neutrinos, where
E, = |p| and E, = |p, |, we can express E, as
E, = E:+ E*+2EE, cos, (5.7)
with @ being the angle between the outgoing electron and the z-axis. Also,

dE,, EE, EE,

- S kaly (5.8)
d(cos) \/E*+ E*+2EE,cos Ly,

Then,
1 &’p.d’p,
dHLIPS_ - 5(5(m E—E E ) EEE
1
- app- P ~d(m — B~ B~ B,)

FE
/dEe/ “d(cos0)d(m — E — E, - E, )
-1 By, (5.9)

E+E,
2dE/dE/ dE, é(m — E— E, — E, )
7T

= 1o

1 m/2
- _6(m — 2E)dE / dE,
4(271’) m/2—E
1
= _0(m — 2E)EdE.
4(2m)
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From Eq. (5.24) of the textbook, we get

_ . 1
L(p™ —e 7, ):%/’MPdHLIPS

2 0
_Gr
- 3

dE 6(m — 2E)(m* — 2mE)E?
21 0

G%m 2 3
= dE(mE” — 2E”°)

27’(’3 0
2
Gpm5

19272

(b) Substituting the numerical values G = 1.166 x 10~° GeV 2, m = 105.66 Me\/ﬂ7 we obtain

1927
Ttheor :F_ior = h= 219 us|. 5.11
theory = 2 theory 71 166 x 1070 GeV2)2(105.66 MeV)® (5.11)
This corresponds to a relative difference of

mobe e o [0.46 %) (5.12)

Tt heory

compared to the experimental measurement.

At first glance, one might suspect that this discrepancy arises from neglecting the electron
mass in the derivation of the decay rate. However, according to Eq. (31.3) of the textbook,
2

the leading tree-level correction due to the massive electron is of order (’)(m§> ~ 2 X 1075,
My

which is far too small to account for the observed deviation. Rather, this deviation is likely

attributable to the radiative correction stemming from the interference between the tree-

level diagram and the QED 1-loop diagram, which appears at order O(«,) = 0.01, aligning

well with expectations.

5.4

For circular polarization, we can take the photon polarization vectors produced by the incoming
electrons (cf. Eq. (A.48) of the textbook) as

1
elz = —(0,1,—1'70),

V2
o | (5.13)
GR: E(O,l,Z,O).

'Tt is important to emphasize that the decay rate scales with the 5th power of the mass, making it highly
sensitive. Using m = 106 MeV as given in the textbook would artificially inflate the relative deviation by nearly
an order of magnitude!
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Chapter 5. Cross sections and decay rates

Note that the outgoing muon momenta in Eq. (5.48) result from a rotation in the y—z plane
applied to the incoming electron momenta from Eq. (5.45). That is,

(g no__
R,(0)p} = cosf  sing | P =15

—sin@ cosf

and
R, (0)py = plf.

Applying the same y-z plane rotation R, () to the polarization vectors gives the circularly
polarized states of the photon exchanged in the final state:

(0,1, —icosf,isind),
(5.14)

— —
S

én = R, (0)ep = E(O, 1,icosf, —isinf).

It is straightforward to verify that these polarizations are orthogonal to the outgoing mo-
menta:

P3-€L =Dy €L =Dp3-€g =Dy € =0,
and properly normalized:
6 el = 1.
Therefore, summing over the amplitudes squares gives

Z M = e, - €1 + e - l* + leg - €11 + ler - €rl?

states

1
— Z[(l +cos0)? + (1 — cos0)? + (1 — cos6)? + (1 + cos6)?] (5.15)
=1+ cos 6,
as expected.
9.5
(a) The classical Rutherford scattering differential cross section is given by
o e (5.16)
dQ  16Egsin* ¢ |’ :

where

e /,: the number of unit charges carried by the incident particle,
e 7, the number of unit charges carried by the stationary heavy nucleus,

e «: the fine structure constant,

34



Chapter 5. Cross sections and decay rates

e Fy: the initial non-relativistic kinetic energy of the incident particle,

e 0: the scattering angle.

The assumptions underlying Rutherford scattering are: (1) the process is non-relativistic
and (2) the scattering is elastic, so the recoil of the heavy nucleus can be neglected.

2,2 4
(b) e The charge factor becomes % — D 727202

A7 Am

e The momentum transfer is & = p; — py such that
- 0
kI = \Bil* + |y | = 255 By = 20°(1 — cos0) = 4p”sin® ,

where we have used the fact that the scattering is elastic, so |p;| = || = p.

2
e The non-relativistic kinetic energy is Ex = 2, hence p? = 2mEy.

Under these replacements, Coulomb scattering reproduces the classical Rutherford scatter-
ing cross section:
e'm? 1 737308

SN 5.17
Ar* k* 16BEgsin* g (5.17)

Note that the above derivation is identical to the one in Section 13.4 of the textbook.
However, I suspect that Eq. (13.79) and Eq. (13.80) in the textbook contain typos: the
denominators with 7* should likely read =°.

(¢) The Feynman diagram is shown in Fig. [5.1]

Di Dy

Fig. 5.1: The Feynman diagram for Rutherford scattering

Without loss of generality, assume the incoming « particle is moving along the z-axis, with

four-momentum
p; = (E,0,0,p), (5.18)

and the outgoing « particle has four-momentum

Py = (E,0,psinb, pcos0), (5.19)
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Chapter 5. Cross sections and decay rates

where we again used the fact that the scattering is elastic, so £; = E; = I, and azimuthal
symmetry allows us to set p7 = 0.

The momentum of the virtual photon k" is then given by

k' =p; —p}=(0,0,—psind,p(1 — cos b)) |, (5.20)

where p = VE* — m>.
(d) This was already addressed in part ([b).

(e) The tree-level result of QFT and the classical field description generally coincide. This can
be understood via the path integral (cf. Eq. (14.31) of the textbook):

(0;t4]0;t,) = N/D(I)(f, £)erSlel, (5.21)

where S is the action of the system, which has the same form in both classical and quantum
contexts (interpreting ® as a classical or quantum field). In the classical limit A — 0, the
integral is dominated by the stationary point of the action, 0.5 = 0, which yields the Euler-
Lagrange equations. In QFT, this corresponds to the tree-level approximation. Thus, both
frameworks agree at tree level.

(f) Moller scattering (e” e~ — e e ) was originally derived under non-relativistic assumptions,
without invoking QED. However, recall that in the derivation of the Coulomb scattering,
one assumes the incident particle’s mass is much smaller than that of the target (e.g.,
m, < m,), which is clearly not applicable for the Mgller scattering. Furthermore, unlike
in Coulomb scattering (e”p™ in the final state), the outgoing particles in Mgller scattering
(e in the final state) are indistinguishable, necessitating the inclusion of both ¢- and
u-channel diagrams instead of a single t-channel diagram as in the Coulomb scattering.

Therefore, Eq. (5.41) of the textbook does not apply to Mgller scattering.

5.6
I shall denote py =p_-, ps = p+, p3s = Py P =D+

(a) Using Eq. (5.45) and Eq. (5.48) from the textbook, we have

s=(p1+p)’=(E+E) - (E—-E)=4E" = | Ely| . (5.22)
t=(p—p3)’=(E—E)>—(0— Esinf)® — (E — Ecosf)* =|—2E*(1 —cos)|. (5.23)

w=(p —py)* = (B~ E)* — (0+ Esin)> — (E + Ecosf)® =| —2E(1 + cosh) | (5.24)
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Chapter 5. Cross sections and decay rates

i

(b) Define a shorthand p;; = pj'p} = p; - p;. Then,

s+t+u=pi+p;+210+pi+ps— 2013+t +pi — 201
= 2p} (P} + ph — Pl — Pi) + Pl + p5 + p5 + pi

=D n (5.25)
=> mi|.

where ¢ runs over all the particle participating into the interactions, and we used the
momentum conservation such that pf + ph — p§ — py = 0. If we take the ultra-relativistic
limit that m, — 0 and m, — 0, then

S+t4+u=0. (5.26)

(¢) Note that t* +u* = 4E*[(1 —cos)* + (1 +cos §)*] = 8E*(1+cos’ ) = %(1 +cos® ). Then,
we can write

do et 9 et 9 9
— = ———(1 0) =|——= . 5.27
dQ  64n°EZy (1+ cos”6) 327%s° URED ( )

(d) We have already derived the general result in part (b)):

s+t+u:2m?:2m§—l—2mi. (5.28)

i
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Chapter 6

The S-matrix and time-ordered
products

6.1

Starting from the Feynman propagator in Eq. (6.34) of the textbook,

d4k '
DF (xh ZL’Q) / T; — ezk(xl—ﬂﬁz)

/ / z (z1—29 ezs(k27m2)6758 (61)

4
:/ d8615m2/ d k4€ [k stk(zi— 932)]7
0 (2m)

where I have employed the Schwinger parameters % = fooo dse’4 (cf. Eq. (B.5) of the textbook),
which holds for Im(A) > 0. Also, I have taken the limit lim,_,j e “* — 1 in the last line.

The d'k integral is Gaussian and can be evaluated using Eq. (14.7) of the textbook:

with A = —2isg"” and J* = i(z} — 24). Note that det A = —16s" and A" = -_g,,. Thus, we
have

—1 > ds Tz — 29)?
Dp(xl,xQ) = W/O ?exp [—Z [% + Sm2:|:| . (63)

38



Chapter 6. The S-matrix and time-ordered products

Taking the m — 0 limit and defining 3 = 1, we obtain

P’y

g 00 o 2
Dp(xq,25) = Z/O dﬁexp[—i(xlT%)ﬂ}

167
o 00 o 2 .
— / dp exp [—z’(xl 72) wﬁ}
167 Jo 4
o Y (6.4)
1677 (g — 1)? — e
1 1

_47T2 (:Cl — $2)2 — 1€

where I inserted an —ie inside the exponent in the second line to ensure convergence of the
integral for all values of (x; — 3:2)2. Note that the sign of ie must be negative; choosing +ie
instead is not an innocuous distortion because it would lead to divergence in e’ = 0o as
b — 0.

Side Remark: the physical role of this ie term differs from that appearing in the
momentum-space Feynman propagator m; in particular, their mass dimensions are
not even the same.

6.2

Starting from Eq. (6.26) of the textbook, one might naively expect the term

(0] () o (1)|0)0(—7)

to correspond to the advanced propagator, and similarly,

(0]g (1) o (22)|0)0(7)

to correspond to the retarded propagator. However, these identifications can not be cor-
rect because they are not Lorentz invariant. For example, the term (0] ¢y(x;)do(z2) |0) =
I’k 1 —ik(z—w)
(2m)” 2wk
volves only Lorentz-invariant quantity). In contrast, the step function 0(t, —t;) = 0(—7) is not
invariant under Lorentz transformations. Hence, the whole term can not be Lorentz invariant.
To further illustrate this point, consider ¢y(z;) and ¢y(z,) are separated by a spacelike
separation (x; — x2)2 < 0. Then, there exists a continuous Lorentz transformation that can
reverse the time ordering, rendering §(—7) ambiguous. Thus, any objects built from the product
of (£7) with a Lorentz invariant function will fail to be invariant unless it vanishes in the space-
like region. Therefore, to construct a Lorentz invariant advanced (or retarded) propagator, it
is insufficient to just enforce time ordering; the propagator must also vanish for spacelike
separations.
To construct the correct form of the advanced propagator, we again start from Eq. (6.26) of
the textbook, but reverse the time ordering in the first term by redefining 7 — —7. Note that
the exponential must remain unchanged—we must not allow both terms to carry either both

is Lorentz invariant (cf. Problem and the fact that the exponential in-
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Chapter 6. The S-matrix and time-ordered products

positive or both negative frequency modes, as that would lead to a unphysical negative energy
state. Accordingly, we must also redefine w;, — —wy, in the first term (yep, this is exactly the

Feynman—Stueckelberg interpretation), so that —i(—wy,)(—7) = —iw,7. This leads us to
Erk o1 . :
D(xq,29) = — [—e_Z (@1=22) 4 eZk(zl_mz)] 0(—T1). 6.5
e = [ (-7) (65)

This ensures that both terms now respect the correct time ordering 6(—7). The minus sign in
front of the first term arises from the sign flip of w;,. We now need to demonstrate it is indeed
Lorentz invariant.

To save notations, define

dk 1
(27{)3 2wk

D(zy,25) = (0]dg(71)¢o(72)|0) = / e_ik(xl_@)a (6.6)
which is Lorentz invariant (cf. Problem and the fact that the exponential involves only
Lorentz-invariant quantity). Then, the advanced propagator can be written as

D (1, 25) = — [D(21,75) — D(w9,21)] 0(=7) = —(0][d0 (1), Po(2)]|0)0(—T) (6.7)

Again, if the separation between z; and x, is spacelike, i.e., (z; — 25)> < 0, then a continuous
Lorentz transformation exists that can reverse the time ordering between the two events and
the step function §(—7) becomes frame-dependent and thus non-invariant. However, now, the
commutator (0|[¢g(z1), dg(x5)]|0) = 0 for spacelike separation, as it has support only on and
inside the lightcone (cf. Egs. (12.76)—(12.80) of the textbook), which is just the requirement of
causality. Therefore, any ambiguity in (—7) is removed by the vanishing of the commutator.

Conversely, when (2 —x2)2 > 0, i.e., when the points are separated by a timelike or lightlike
interval, no continuous Lorentz transformation can invert their causal order. In this case, the
step function §(—7) is well-defined, and we conclude that the advanced propagator takes the
form:

= [D(z1,22) = D(wy,21)]0(—7) (21 —2)* >0

0 (7 —25)* <0 (6.8)

D (21, 25) = {
Since D(z4, x5) is manifestly Lorentz invariant, and the use of §(—7) is restricted to the causal
regime where it is unambiguous, the advanced propagator D 4, defined in Eq. (6.5)), is Lorentz
invariant and has correct time ordering.
Similarly, the retarded propagator can be expressed as

Dp(wy,75) = [D(1,29) — D(19,71)]0(7) = (0[[dg(21), Po(22)][0)0(7), (6.9)

where the time ordering is reversed in the second term of Eq. (6.26) of the textbook, along with
the appropriate sign change of wy,.
Continuing with the derivation,

Dy = —[D(xy,25) — D(x9,71)] 0(—T)

&’k 1 P o

= BN k(@ —Ty) —iwgT —ik(Zy —5) lwk'ri| 0(—

/ <2w>32wk[ cooe e o) (6.10)
EPk1

_/Wﬂe
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where we used the substitution k& — —Fk in the first term, which leaves the integral measure
invariant.

For 7 < 0, we close the contour in the lower half-plane. The relevant contour integrals are

o dw - -

o WWT — _2 . lwkTg o ‘11
/Oow_ el Tid (1) + Oe), (6.11)
o0 dw . )

WWT — _2 . 71&)1{7’0 _ ‘12
/oo g z’s)e Tie (—=7) + O(e), (6.12)

where the minus signs arise from clockwise contour closure.
Therefore, the advanced propagator becomes

Phk 1 e i . . 1
es0- ) (2m)° 2wk 2w w—(w, —ie)  w—(—wy, —ie)
Phk 1 e i . )
= lim 3 Ty R RE { ‘w;; 2}
e—0~ (27T) 2wy, 21 (W+ZE) —
T Ak i P
= lim 1 ——; -
oo ] Okt i R m
d*k ; ,
== llm 173 ! 3 . elk(l‘l —xz) )
S0 ) e R et e

(6.13)

For the retarded propagator, we close the contour in the upper half-plane since 7 > 0,
obtaining

o0 dw ) )
o wWWT — 2 - ZWICTQ O 6‘14
/oo P is)e Tie (1) + O(e), (6.14)
/oo dw T = 9mie " TO(1) + Ole) (6.15)
e’ = 2mie T : :
oo W — (—wy + i)
Hence,
Dg(zy, 1) = lim dg—kie_“z(fl_f?) [~ + e 7] 0(7)
7 ot ) (2m)% 2wy
Pkl s i : 1 1
= lim /_3_€—zk(xl—x2)i dwe™rT |: __ .
emot ) (2m)° 2wy 27 w— (w +ie)  w— (—wy+i€)
4 .
= lim dk ! eik(xlflz)

—otJ (2m)* (ko — ie)* — kK* — m?

4 .
=| lim d’k ! etk@—a) |
ot 2m)E? —m® —ie

(6.16)
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Side Remark: By the way, there exists a very interesting relationship connecting the
advanced and retarded propagators to the Feynman propagator. For the advanced
(retarded) propagator, both poles of the integrand lie below (above) the real axis:
ky = twy, — ie (resp. ky = fw; + i€). In contrast, for the Feynman propagator, the
poles are located on opposite sides of the real axis: ky = d+w;, F ie. These differences in
pole prescription lead to the following identities in momentum space:

(k) i [ 1 - 1 ]

T 2w, w—(wp—ie) w—(—wy—ie)

i 1 1 1 H 1

C wp |w—wptiE whwg—iE whwgtie ww,— e
' 1 1

(k) — = { __ ] (6.17)
2w |lWHw, +1e wHw, —ie

1 1
=lp(k)+ —Im | ——
r )+wk m[w—irwk—l—ie}

7r
= p(k) = 20w +wp),

where I have used Eq. (24.26) of the textbook:

1 1
— = —2mid (kg — wy,). 1
ko — Wk + e k’o — W — 1€ i ( 0 wk) (6 8)

Analogously, for the retarded propagator:

_ o1 6.19
HF(k)+wkI Lu—wk—l—ia} (619)
= Tp(k) = -8( = )

As a spoiler, T just verified Eq. (24.27) of the textbookﬂ These propagators are closely
related to the optical theorem and the Cutkosky cutting rules.

“Except that I used a flipped convention of "advanced” and “retarded”, which is just a matter of
”whose point of view” with nothing physical.

6.3

Starting from the general basis for a state with n particles, we define
|¢n> = NaJl[gl o (ZLH |Q> ) (620)
where N is a normalization factor. The normalization condition for the vacuum state imposes

1=(QQ) = N (6.21)
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We proceed by examining the matrix element of an operator O, sandwiched between basis
states as (¥,,| O|v,,). Since we are concerned only with non-trivial scattering processes, we
assume |1,,) # |[¢,,) — that is, either m # n or, if m = n, at least one momentum in the final
state differs from that in the initial state.

Furthermore, we impose that O must act non-trivially on all m particles in the initial state
and all n particles in the final state. Without this condition, subsets of particles could remain
unaffected, resulting in trivial identity factors, which can be factored out from the scattering

matrixﬂ

The matrix element is then given by

(V| O th) = INIQZ/dql---qudpl--'dpokz(ql,.--,pz)
k,l (6.22)

.

o cal a, --a,al, ---al, Q).

X <Q| ak,, * Ak, @ Py 1L, K

Note that the non-triviality condition implies that only terms with & > n and [ > m can be
non-trivial in the sum.

Now, we can systematically commute all annihilation operators to the right and all creation
operators to the left. Each time an annihilation operator passes a creation operator, it produces
a Dirac delta function 6(p — k) through contraction. For instance, we commute the group
agl e agk past aj ---a;, to the left. If any of these creation operators remains uncontracted
and acts directly on the vacuum in the final state, the matrix element vanishes. Therefore, to
obtain a nonzero result, it must be that £ < n. The same argument also leads to | < m.

Combining these with the non-trivial scattering conditions, we conclude that only term with
k = n and [ = m survives. After performing the contractions, the surviving term produces
a series of delta functions. Note this procedure is de facto "normal ordering”. By normal
ordering these creation/annihilation operators, the only parts that are not vanishing in vacuum
matrix elements are all kinds of possible contractions resulting delta functions. One can refer
to Section 7.A of the textbook for further details of normal ordering and contractions. We can
then carry out the integral:

(Un] O [th) = /dq1 < dgydpy -+ - dpCry(qr, - .. p) [6(qs — k1) -+ - 6(py — K)) 4 (permutations)]

= n!m!C (K, k).
(6.23)

Here, the factors n!m! account for the number of ways to contract the creation and annihilation

operators: there are n! ways to contract ay ---ay, with azl e agn and m! ways to contract

with a; . -aL, . These combinatorial factors are often absorbed into the definition

1 m

a

Pm T a

Py
of O itself, effectively redefining O — ﬁ(’) where it appears in the Lagrangian.

"More formally, we need to invoke the cluster decomposition principle here, and the non-interacting part of
the scattering amplitude corresponds to the disconnected pieces of Green’s functions.
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Feynman rules

7.1

ZM 1-loop —

Ps 4
/
/
. / .
Z-/Vltree =|TTT=-~-—~% € g -
b1 \
\
\
P2
P3
/
/
/
k—py /
//—\/\
D1 -=----- 1 )k —py
\
~-<
k AN
\
\
\
b2
d*k i i i

(ig)’ / (

o) K —m® +ic (k—po)® —m® +ic (k—p)* —m* +ie |
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Chapter 7. Feynman rules

T3
(p(z1)p(2)P(23)) = T1 --=---= A\ !
\\_(y

1)

—| (ig)? / d's / 2y / d*2D (21, 2)D(x,y) Dy, x3) D(y, 2)D (2, 23)D(2, )

3 . . . d4 / d4k1 d4 / d4k:2 d4 / d4k3
= (ig) dz [ d'y | d°z - - 7
(27r) (2m) (277) (2m) (27?) (2m)

ik (z—y) ZP2(ZJ ) ikQ(y—Z)eipé(z—ﬂﬁs)eikB(z—JF)

PP —m?4icki —m® +iepf —m® +icks —m® +iepy —m® +icks —m® +ie
(7.3)

(d) Applying LSZ formula (cf. Eq. (6.1) of the textbook) to Eq. ([7.3)),

(f|S)i) = {z / d*zye” P (0 + m? _ [z / d*zpe™2™2 (0 + mQ)} [@ / d* 2537 (0 + mQ)]
X (Bla1)blas)b(as))

= [—i/d4xleiplwl(p% —m2)} —i/d4x26ipzm2(p§ —mz)} [—i/d%geipg'x?’(pg —m2)}

x (p(x1)p(x2)P(x3))

_/ (2?;4/ (2?)14/ (C;) / (2:2/ / d%/ xl/ d%/ d4x3/ de / 'y / Tz

% ei(—P1+’P/1)CU1ei(P2—Pl2)$2€i(P3—P/3)I3ei( p1+k1 k3)x l( ky+patka)y Z( keg-+p+hs)z

~—

07— m? ; 02— m? ; 02— m? ;
. \3 1 5 — 3 —
x (ig) 17}

P2 —m?ticki —mP+iepF —mP+icks —m® +iepy —m® +iek; —m® +ic
~ (ig)? / d*p) / d*k, / d*pl, / d*k, / d*ph / d*ks (2m)
em)* ) 2ot ) @20t ) eot) @ent) (@2n)!

x 04 (—py + P1)0 (D — p2)6* (ps — Ph)O* (=Pl + Ky — Kg)d* (—ky + py + Ky)6* (—ky + P + k)

o p%—m2 ) pQ—m2 7 p?.)—m2 1
P —m?4ick? —m® +iepf —m® +icks —m® +iepf —m® +icks —m® + ic
d*k i i i
= (2m)**(p; — py — 2'3/ ,
(27)°0" (b1 = P> = p3)(ig) (27?)4k2—m2+ie(k—p2)2—m2+z'e(k:—p1)2—m2+ie
(7.4)

45



Chapter 7. Feynman rules

where I relabeled k; — k in the last line. This expression matches exactly with Eq. (7.2))
from part (b), up to the overall factor (27)*6*(p, — po — ps) that enforces momentum
conservation and factors out of the matrix element.

7.2

iMGpt - ’l)\ (75)
Z.M?ypt == Zg

The connected 2 — 4 diagram with a 6-point vertex contributes to the S-matrix as

(fI5]i) = (27T)454 (Z p) iMepr = (27r)454(p1 + P2 — D3 — Pa— D5 — Pe)iA, (7.7)

while the disconnected 2 — 4 diagram composed of two 1 — 3 subdiagrams with 3-point
vertices contributes to the S-matrix as the square of the 1 — 3 amplitude,

(181 = @06 [ S pu |3 3 pa | M)

subset subsetqy

(7.8)
= —(27)%0"(p1 — p3 — pa)0" (p2 — p5 — Ps)g° + permutations of final states .

To check whether there is any interference between the connected and disconnected dia-
grams, one could sum the two and then take the square. However, it is obvious that each
additional delta function from a disconnected piece introduces an extra factor of spacetime vol-

ume (;:;4, which is formally infinite. Hence, disconnected diagrams are always infinitely larger

than the connected ones, and any interference term vanishes.

7.3

(a) The diagrams are shown in Fig.[7.1

~ - ~ /
\\ // \\\\ ,,,/ \\\\ e_ //
\ ’ - T~¢” - - =~ ,
— A\ /7 — € (& e /7
e \ / € A4
AN~/ N4
7\
_ // \\ _ /7 N\ —
e (& _ — 4 No€e
/ \ N
e “ o~ e -
/ \ -~ =~ ~ P - \\
/ \ -7 S~ -~ - \
e
(a) s-channel (b) t-channel (¢) u-channel

Fig. 7.1: Spinless non-relativistic Mgller scattering e”e™ — e e~

(b) The s-channel diagram Fig. is forbidden due to charge conservation in real QED.
()

iM=iM; —iM, = (ieme)%(ieme) — (ieme)%(ieme) =| —ie*m? E — l] : (7.9)
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(d)

Since spin is conserved at each vertex, the allowed spin combinations are:

o t-channel: (i) [t1) = [11), (i) [1)) = [L), (iii) [11) = [14), (iv) [1) = |11,
o w-channel: (i) 1) = [11). (i) [L0) = |11, (i) [14) = [11), (iv) [14) = [11).

Then,

1 1
' : .9 9
My = Moy = —ieTme <; - E) ; (7.10)
ie’m?
Z-'/\/l|T¢>—>|N) = iM|¢¢)_>|¢¢) = - 7 <, (7.11)
.9 9
. . ie“m;
Mipyoin) = Mmooy = —— (7.12)
The squared amplitudes are:
1 1 2
2 2 4 4
= = S+ = 7.13
Mirtysienl” = IMjysppl™ = evme <t2 - tu) , (7.13)
etm?
2 2 e
Migyonpl” = IMupounl”™ = 2 (7.14)
etmd
2 2 e
|M|N>%lm| = |M|m»m>| = 2 (7.15)

Let p; = (E,p;), po = (£, —p;) and p3 = (E,p}), py = (£, —p;) be the initial and final
four-momenta in the CM frame, with £ = %ECM. Then,

t = (p1 —ps)* = —2p°(1 — cos ), (7.16)
u=(pr = ps)* = —2p*(1 + cos 9), (7.17)

where 6 is the scattering angle, and p = |p;| = |p}| = VE*—m?= %VE%M — 4m?.

The CM differential cross section is given by (cf. Eq. (5.33) of the textbook):

do 1
— - X = M
(dQ) CcM 647TQECM Z | ’

splns
Codml /111
128722y (t_Q T E) (7.18)
o ml 1 1 1 '
B2t EAwp” {(1 — cos f)? - (1 + cosh)? T 1—cos’d

e*m? 14 3cos”6

B 321 B¢ (Eéy — 4m2)?  sin 6
where the factor of % in the first line accounts for the two identical particles in the final state,

and the factor of }1 averages out our ignorance of the unpolarized initial spin configurations.
Then, integrating over the azimuth angle ¢, we arrive at

( do ) B e*mi 1+ 3cos? 0
deost ) oy 167Egy(Eey — 4m2)®  sin'6 '

(7.19)

The angular distribution is shown in Fig.
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do/d(cos0)
1000 -

800

600

400

200

L L — - | - L L | n L Lo T L 9 (rad)
0.5 1.0 1.5 2.0 25 3.0

Fig. 7.2: The angular distribution

7.4

(a) The Feynman diagrams for the 2-point function are shown in Fig. [7.3] The cross denotes
a "mass vertex” insertion.

_______ —— N S
(a) C)((Tn2)0> order (b) C)((Tn2)1> order
R s Sl ST e — X X K
(c) C?<(7n2)2> order (d) C?((n12)3> order

Fig. 7.3: Mass insertions contributing to the 2-point function.

(b) The momentum-space Green’s function G(p°) is formally defined via the 2-point function:

d'p

Qom0 = [ e reiag?) (7.20)

—~
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Let G,(p°) denote the (’)((mz)") contribution. At tree level, this is just the massless
propagator, '
i

iGy = . 7.21
0 p2 + 1e ( )
At higher orders,
iGy = iGo(—im?)iGy, (7.22)
iGy = iGo(—im*)iGo(—im*)iG,, (7.23)
iGy = iGo(—im*)iGy(—im?)iGy(—im?)iG,. (7.24)
(c)
iG(p®) = iGy +iGy +iGy + - -
i i N i N N
= + —im + —m —im + -
p2+i8 p2+i5( )p2+z'€ p2+i5( )p2+z'€< >p2—|—i5
p + i€ ; (p + zs>
1 1
p +ie1 —
p —HE
B i
]o2 —m?+ic’
(7.25)

where we treat the "mass interaction” to be small (m* < p?) in the sense that the pertur-
bation series does not break down, such that the geometric series is well-defined. The final
expression reproduces the propagator that one would have obtained directly for a massive
scalar field.

(d) We can set up the Lagrangian as

L= —%gb[ld) — %ngbQ + Jo. (7.26)
The equation of motion are
Do = J —m’¢. (7.27)
Solving this perturbatively with ¢, = O((mQ)”), we have
e O((m*)?):
Oy = J + O((m*)"). (7.28)
(’)((mz)l):
2
O(go + ¢1) = J —m’¢y + O((m?)?) = J (1 — %) +0((m*)?). (7.29)
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o O((m?)?):

O(po+ 1 +¢2) = J—m2(¢0+¢1)—|—(9((m2)3) =J (1 - % (1 - %)) +O((m2)3).
(7.30)

Continuing the perturbation series, one can deduce that

O¢ = O (i%) - Ji (—%2) =J 1m2, (7.31)

1+

and hence 1

O+ m?

However, this solves exactly the same equation of motion if one included the mass to begin
with:

¢=1J (7.32)

(O+m?)¢=J. (7.33)

7.5

Besides the proof provided in Subsection 7.4.2 of the textbook, I present here an alternative
demonstration that integrating by parts does not affect matrix elements. The argument once
again reduces to showing that a total derivative term does not contribute in perturbation theory.
Consider modifying the Lagrangian by adding a total derivative:

L—L+0,X,. (7.34)

Then the action shifts as

S — / d'z(L+0,X,) =5+ f X,dx,,. (7.35)
3

If we assume that X" is constructed from operators that asymptotically vanish at spatial
and temporal infinity—i.e., they approach the same trivial vacuum, ensuring X* — 0
at spacetime infinity—then the surface integral vanishes, and thus 05 — 0. Since the action
remains unchanged, the matrix elements consequently remain unchanged as well.

However, the assumption in boldface is valid only in perturbation theory. In non-perturbative
theory, classical vacua that are topologically distinct from the trivial vacuum may exist, causing
the surface term to remain. In such cases, the above argument no longer applies.

7.6

There are four Feynman diagrams contributing to the ¢,¢9 — ¢,¢, scattering process, shown
in Fig.[7.4. Two correspond to s-channel and two to u-channel diagrams. In each channel, the
intermediate propagator can be either a ¢; or a ¢,.

50



Chapter 7. Feynman rules

(a) s-channel (b) u-channel

Fig. 7.4: Feynman diagrams for ¢,¢, — ¢, ¢, scattering.

From the kinetic terms in the Lagrangian, we know both ¢; and ¢, are massless:

Po, 6, = 0. (7.36)
Also,
s=(p1+p2)° = (D3 +14)> =2p1 -y = 2D Da, (7.37)
u = (p1 - p4)2 = (P2 - P3)2 = —2py Py = —2py - P3, (7~38)
s+t+u=0. (7.39)

Let us denote M, ; as the s-channel amplitude mediated by ¢;, and similarly for M, ;.
Then,
2

, N g
ZMS,l = (Zg>?(2g) = _2;7 (740)
. . LN T T, 7 v . 2 2 2 ,)\28
Mo = (A=) (IK7) 5 (A (ipa) (—ik7) = —i==(pr - P2+ p2)(ps - pa+ pi) = —i— =, (T41)
) g2
. . NI ) . . v v .)\2 2 2 ,)\2U
iMyz = (iX)(ip}) (ik )F(ZAX—ZM)(_W )= _Z?(Pl —p1-Pa) (P2 — P2 p3) = —ZT-
(7.43)
Combining all contributions,
11 N’ N
IM =My +iMy+iMyq +iMyy = —ig* [ =+ =) — i (s +u) =ilo +i2", (7.44)
’ ’ ’ ’ s u 4 sU 4
and thus,
2 2.\ 2
gt At
M|* = (@ + T) - (7.45)

Plugging into Eq. (5.33) of the textbook,

do 1 1 gt Nt ?
- - IM|* = =+ — ) (7.46)
d§2 CM 64 ECM 647°s su 4
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7.7

(a) The diagram contains 6 internal lines and 4 vertices. Let the incoming momenta be p; 5
and the outgoing momenta be p; 4. Label the internal momenta as follows:
o At the vertex linked with p;: kq, ko, k5.
e At the vertex linked with py: kg, ky, ks.
o At the vertex linked with ps: ko, ks, k.
o At the vertex linked with py: ky, ky, k.

The momentum conservation at the four vertex gives the following equations:
ky + ko — k3 = py, (7.47)
ko — ks + kg = ps, (7.48)
ks + ky — ks = po, (7.49)
ky + ky — ke = py. (7.50)

However, only 3 of these 4 equations are linearly independent. To see this, write them in
matrix form A - K = P, with

ky
11 -10 0 0 ko "
o1 0 0 -1 1 | & | p
A<loo 11 1ol K=|Pl P[] @
ke

where clearly, rank(A) = 3.

We may choose ks, k3, k4 as the independent loop momenta. Then,

ky = p1 — kg + ks, (7.52)
ks = —po + ks + ky, (7.53)
kg = p3 — po — ko + kg + ky. (7.54)

The amplitude is then given by

4 4 4 .
z‘M:(—M)4/dk2/dk3/dk’4 o
2m)*) (em)*) @r)t AL K +ie

d*k d*k d'k ' ‘ '
= _)‘4/ 24 / 34 / 44 Z 2, . 12 : ) - : (7-55)
(27T) (27T> (27T> (pl — kg + kg) + 1€ ]{52 + e k'3 + 1€
" 7 7 7
ki+i€(—p2+k3+k4)2+i&?(p3—p2—k2+/€3+/€4)2+i8 '

Note that there is no non-trivial way to map this diagram onto itself without tangling up
the external legs. Thus, the diagram has no non-trivial symmetry, and the symmetry factor

is .
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(b) Chopping off the external lines, the symmetry of the diagram is that of a tetrahedron, which
is isomorphic to the symmetric group S, with 24 elements. Therefore, the symmetry factor
is . This includes 12 proper rotations, 6 pure reflections, and 6 rotatory reflections that
map the tetrahedron onto itself.

Alternatively, one can interpret the symmetry as arising from all permutations of the 4
vertices of the diagram, yielding 4! = 24 distinct configurations. After all, S, is precisely
the permutation group of four objects.

7.8

1
L= _§¢W(D + m12/V)¢W + |a,u¢,u|2 - mi|¢u|2 + |8e¢e|2 + |au¢1/”|2 + |au¢ue|2
+ 9¢M¢W¢zu + g¢e¢W¢Z6

. (7.56)

where ¢u,wwve must be complex scalars for them to have corresponding antiparticle. For
these fields, we define ¢, = ¢,.

(b) Z,
IM = (ig)m(ig)7 (7.57)

where k = p, — Py, 18 the four-momentum of the intermediate W boson. Then,

4
g
MP=—2
My
g1
miy <k_2 _ 1)2 (7.58)
miyy
4 2
k
~ g—4 s —5 < 1.
My my
In the rest frame of the muon:
pu - (m;u 0)7 (759)
pl/u = (EI/’_L7ﬁl/u)7 (7'60)

where E, = ]ﬁyu| since we treat the neutrino as masslessﬂ We then observe
2 2
k* = (p —p,,)" =mu(m, —2E, ). (7.61)

Note that E, <m, /2, otherwise energy and momentum conservation would be violated.

2
Therefore, the % < 1 holds as long as e <1,
myy my

1Al‘chough the problem in part (a) assumes m, = 0, a massless particle cannot decay, so we must keep m,,
here.
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(¢) The dimension of the decay rate I is
T =1. (7.62)

To ensure that [g] = 0, we must insert a factor of mi to restore the correct mass dimension
of the decay rate. Hence,

4 5

g my
== K 7.63
1927 myy, (7.63)

(d) Suppose g ~ e = 0.303. Given that I' = —-—— and m, = 0.105 GeV, we have

2.2x10° " s

1/4
1 m,
my =g (W%) =188.2 GeV |, (7.64)

where I have inserted an A to convert the decay rate into energy units.

(e) By assumption, the coupling strengths are the same, and the 7 decay is also mediated by
the W boson. Hence,

0o\ /5
m, = (F—T) m, ~|2.5 GeV ], (7.65)

(f) As

= 0.178, (7.66)

we have

178 x i \ /°
m, = (%) m,, ~[L177 GeV] . (7.67)

m

(g) As “assumed-to-be” scalars, their decay distributions are isotropic. Moreover, since all the
tree-level decay rates I'y,.. depend only on the combination # up to some power, it is not
possible to extract g and my, separately at tree level.

Since e and p are electrically charged, one approach is to consider NL.O corrections involving
photon vertex correction. An example is shown in Eq. (23.38) of the textbook. The decay
width, including the NLO correction from a photonEL takes the form

(e m
F,u ~ Fu,tree |:1 + _F <_W) + . :| ) (768)

o
47 m,

?Since myy is very heavy and g ~ e by assumption, the leading NLO correction arises from photon vertex
contributions rather than W-mediated corrections.
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where F), is a dimensionless form factor. While its precise functional form does not matter
here, it must depend only on the dimensionless ratio ~* by dimensional analysis, since my,
T

and m,, are the only relevant energy scales (electron and neutrino masses are neglected).

As the correction term depends solely on my; and not on g, it is in principle possible to
extract my, by comparing the measured decay rate to the tree-level prediction. However,
note that one cannot extract mW by observing only muon decay. The reason is that we
don’t really know the values of —Z-. What we actually measure is the total decay rate,
which includes both the tree- level "contribution and all radiative corrections. Hence, we
can’t properly measure even the ratio itself.

The strategy is to compare the deviation in the muon decay with that in the tau decay,

5
and to note that the tree-level ratio satisfies g*—z = (%) . We can see
w,tree n

r (m )5 L+
Ly M/ 14 LF,
of which my, dependence is isolated.

Once a value for my is extracted from this, it can be substituted back into Eq. (7.68)) to
determine g.

E: ;:::, .

Hence, to see the difference in the NLO corrections, one needs to measure both tau and
muon decays with precision better than O(%F )

7.9

(a) The tree-level cross section is proportional to

1
s

i

ao<—|./\/l|

1 1
- 7.70
- (7.70)

(s —m*)? +m’T?

s —m? +iml

(b) The sketch is shown in Fig.

(c¢) Technically, this should not be labeled as the amplitude M, whose mass dimension is
[M] = 0, which is not the case for a propagator.

I 1 1 ( 1 1 )

m-—-———-—— = — —

pP—mitic 20\p*—mP+ic p’—m®—ic
—c

(7.71)

(p2 — mz)z ek
which vanishes as ¢ — 0 unless evaluated on-shell, p* = m?.

Note if one integrates over p*,

o) 2 2
— (P —m 0 T T
d2 = — |t 1 _ _— — [ = — ] = —7r. 72
QA T R [“ ( e ﬂ G+3)=— @™

0
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— IMm=5% — [IM=10% — ['m =50%

g x
400
300

200

100 -

4: X = s/m?
Since one also has
| mit - m®) = . (7.73)
0
it follows that
1
pT—m" +e

Suppose the interaction term is §¢¢. For simplicity, we treat ¢ as a scalar. Let the mass
of ¢ be M and the mass of ) be m. We can describe the loop diagram (excluding the initial
and final lines) using an "effective” interaction:

k—p
------ G S ------%-----. 775
PN p p p (775)
k

That is

iMoo (p) = l(i )2/ L i i — i%(p) (7.76)
eI =N | ) k= p —mE i R —mE e '

We shall also denote the Feynman propagator as IIz(p) = ——5—. Then, the dressed

2 2 .
p - —M"+ie
propagator iG(p) can be written as a perturbative sum over the ”effective” interaction at
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all orders:

i0(p) = === === b @ QO

= Hp(p) + 1 (p) (i5(p)) Ur(p) + 1 (p) (X (p))Ir(p) (i5(p))p(p) + - -

1) ST ()" .
1

=IIx(p)

1 —iX(p)I1p(p)

TP M X(p) +ic

The Breit-Wigner distribution is then reproduced if one redefines M* — M?* 4+ Re X(p) (as
a spoiler, this is actually the mass renormalization), and identifies Im ¥(p) = MT.

(e) The result of part (d) says
Im Z(p) =Im Mloop = MFBW (778)

What we need to prove is that the width I'gy appearing in the Breit-Wigner distribution
is exactly the decay rate I'y_,,,. This is actually one of the implications of the optical
theorem. The steps below follow Section 24.1 of the textbook.

From Eq. (6.19)), we also haveﬂ

(k) = TLa(k) + —6(ky — wy). (7.79)

where the advanced propagator is given by

l 1 1

[My(k) = — 7.80
a(k) 2wy ko — (wp +i8) kg — (—wy, + ig) (7.80)
The derivation of part (c¢) can also be used to show
1
- = —78(ky — wy)- (7.81)

ko—wk—’—ig

Plugging this back into the loop expression in Eq. ((7.76)):

i/\/lloop(p) = _% / % |:HA(I€ — p) + w:p5(]€0 —Po — wkz—p):| [HA(lf) + 15(]{70 - wk) .
(7.82)

The product term II4(k — p)II4(k) can be dropped because both propagators have poles
located above the real kj axis. Thus, when performing the &, integral, one can safely close

$We swapped "retarded” and ”advanced” here in accordance with the textbook convention.
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the contour in the lower half-plane without enclosing any poles, resulting in a vanishing
contribution.

Similarly, the product of the two J-functions can be dropped because their arguments
cannot simultaneously vanish. For instance, in the rest frame where p'= 0 so that p, = M
and wy_, = wy, the two delta conditions §(ky — wy) and 0(kg — py — wy—,,) are mutually
exclusive. Therefore, their product has no support.

Thus,

2

My = [ 255 [Lath =) 2050 =) +

:—/ 'k { (k — p)—5(/€ — wy,) +

”&%—m—%pmuw}

(Uk,p

ko~ o — )i (B)]
’ (7.83)

where we used Eq. (7.79)) again, and dropped the product of two delta functions to get the
last line.

Taking the imaginary part. Note that the delta functions are real, so the imaginary part
only comes from iIl. Using Eq. (7.74]), we find

Im M, (p) = % / (;lﬂl;l {7?5 ((k - p)? — m?)) wlké(ko —wy,) + (kK — mz)%_pg(kg _
(7.84)

The second term vanishes since the delta functions cannot be simultaneously satisfied. Now
we use the identity

—5(1<: —wy,) = 0(k* —m?) — ia(ko + w), (7.85)

2(x}k 2wk

and again drop the term d ((k — p)? — m2)) d(ko + wy). We obtain

Im M0, (P) ———/ 'k (=271)0 ((k — p)* —m?)) (—2mi)6 (ko — wy)- (7.86)

We just derived cutting rules.

Lastly, we change variables by letting £ = ¢, and k — p = ¢, and insert the identity
L= [d'ad'(p—a — g):

_9_2 d'q d'qy V085(a2 — m2 2 _ 254 — g —
tn My () = & [ 2 [ S oma(at — mataE —m'o -~ ). (78T)

Recall from Eq. ([2.36)), as shown in Problem

/k;oZM( wt)0las) = [ dg 1 (7.88)
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and note that since p® > 0, the d-functions can only have support for ¢0 > 0 and ¢J > 0,
we then have

2 3 3
g 44 4’ T 1 1
lioop(p) 4( 7T) (p q1 Q2)/ (271')3 / (271')3 2wa 2(&){12
2 (7.89)
= gz dHLIP87

where the integral is nothing but the two-body Lorentz-invariant phase space.

On the other hand, the tree-level decay amplitude for ¢ — ¥ is similar to that in Eq. (7.1)).
Using Eq. (5.24) of the textbook, in the rest frame of ¢, we have

1g°
Lospy = 290 dIypps, (7.90)

where the factor of % accounts for the two identical final-state particles .

Comparing Eq. (7.89)) with Eq. (7.90), we find

MFBW =Im> =Im Mloop = MF¢_>¢¢ . (791)

Therefore, the width in the Breit-Wigner resonance distribution is exactly the decay rate.
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Chapter 8

Spin 1 and gauge invariance

8.1

Consider two arbitrary states |¢) and |w’> in Hilbert space. We are interested in determining
the probability of projecting |¢'> onto [¢). Suppose the unnormalized P = | <¢|¢/> ]2 > 1. To
retain a sensible probabilistic interpretation (i.e., P < 1), we can normalize this projection by
the norms of each state. This is valid, as states in Hilbert space are rays rather than wvectors.
Thus, we have

_ @)
= @y = (81)
This, however, impliesEI
(W[ P < (W) (W']9) (8.2)

The left-hand side | <77/}|¢/> |2 is manifestly non-negative. If the two norms on the right-hand side
had opposite signs, this inequality would be violated. Therefore, consistency requires that both
(¢|v) and <w"1//> be either positive (positive-definite norm) or both negative (negative-definite
norm).

8.2
oL
=—0,A,— g, L
’ELV a(aﬂAQ) v (6% g,ul/
1 (8.3)

= _F;LaauAa + Zg,uz/Fo%B .

The energy density ¢ is
1
€= 760 = _F()aatAa + ZFO%B
= (B + BY) + A0,(0,4,) — AL A + 0;(AoFoy),

2

'One might recognize this is simply the Cauchy—Schwarz inequality. However, we refrain from quoting it
outright. This is one of the place where physicists and mathematicians diverge from each others because we
don’t assume the norm <w|1//> to be positive-definite, while a mathematician would argue a ”norm” is, by
definition, positive-definite, and this problem is mathematically trivial.
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which easily follows by taking the m — 0 limit of Eq. (8.27) in the textbook. The first term
is positive-definite. The second term vanishes under the Lorenz gauge 9,4, = 0. The third
term drops out once the equation of motion [JA, = 0 is imposed. Thus, the only possibly non-
positive contribution arises from the last term 0;(AqFy;), which is a total spatial divergence.
Therefore, we conclude that

1~ =
e — 0,(AgFy;) = §(E2 +B* >0/, (8.5)
and we recognize that .

8.3

The classical Lagrangian for a massive spin-1 particle (i.e., the Proca Lagrangian) with a source
current J, is given by

Lo 1 5 0
E = ZFNV + §m AN — ANJN (86)
Applying the Euler-Lagrange equation yields the equation of motion
2
0A,-0,0,A, +m"A, =], (8.7)
or in momentum space,
[(_pQ + m2)g,u1/ + p,upu} Au = J,u' (88)
By Lorentz invariance, the propagator must take the general form
I, = Agu + Bpupy, (8.9)

where A and B are scalar functions that may depend on p* and m?*. Substituting the inversion
A, =11,,J, back into Eq. (8.8), we have

[(—=p* +m®)g,, + pup] A, = J,
(=0 + M) g + Pupy) e = J,,
(=0 + M) g, + D0y (Agua + Boypa) o = J,
[A((=p* + M) o + Pupa) + B(=0” + m°)pupa + P*pupa)lJo = J,
A(—p2 + mz)glm + (A+ Bmz)pupa = pa- (8.10)

Matching coefficients, we have

A(=p* +m?) =1, (8.11)
A+ Bm® =0. (8.12)
Solving this system yields
—1
A= — > (8.13)
pT—m
El
B=—m . (8.14)
p—m
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Thus, the classical propagator for a massive spin-1 particle takes the form

M, = Ag,, + B Rl
ny g/u/ p,upll - pg - mg

8.4

I would suggest working out Problem first before proceeding with this one.

(8.15)

To impose the axial gauge Ay, = 0, we can make use of the result in Eq. (8.45)), and set the
reference vector to be 7, = (1,0,0,0). This choice ensures A, - r** = 0, which enforces Ay = 0.

The corresponding photon propagator then reads

1
Hoo—_2<_1_1+2): )
P
Ly p p
Hi:Hi:—<——z —Z)—o,

. 1 DiD;

8.5

(8.16)

(8.17)

(a) Let us begin by considering the frame in which the spin-1 particle propagates along the

z-axis, following Eq. (8.68) and Eq. (8.69) of the textbook. Its four-momentum is

P’ = (£,0,0,p,),

and a suitable choice of polarization basis is

e.(p) = (0,1,0,0), €(p) = (0,0,1,0), eﬁ(p)zei(p):<’ﬁ,o,o,§).

m

Define a rank-2 tensor to represent the polarization sum, P, =
only non-vanishing components are

i u

2 2
i yZs E
Py = E €ofp = —5 = — 1+ —,
i=1.2,3 m m
Py = Py = E €1€1 = E €96y = 1,
i=1,2,3 i=1,2,3
2 2
R 2 p
7 1 z
P33 = E €363 = — = 1+ —;,
i=1.2,3 m m
P — Pu — i i ii Ep,
03 — {30 — €p€3 — €3¢0 — 5 -
i=1,2,3 i=1,2,3 m

*Note that the outer product of two rank-1 tensors (i.e., vectors) yields a rank-2 tensor.
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(8.19)

‘€'l In this basis, the

(8.20)
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By Lorentz invariance, the polarization sum must take the general tensorial form
Z eief, =P, = Ag,, + Bp,p,, (8.21)
where A and B are scalar functions that can depend on p® and m?. Since the physical

polarization vectors €, are transverse to the four-momentum Dy, We must have

0=rp, Z ezei =p, P = (A+ BmQ)py — B = —A/mQ, (8.22)

)

where the on-shell condition p* = m? has been used for the physical four-momentum.

Comparing the explicit expression in Eq. (8.20]) with the general form in Eq. (8.21]), we find

the normalization A = —1. Therefore, the physical polarization sum is given by
S el = Py = —g + 222 (8.23)
, m

Compared with Eq. (8.15)), it is evident that Eq. (8.23)) precisely corresponds to its numer-
ator. The propagator is formally defined via the correlation function. Recall the derivation
in Chapter 6.2 of the textbook: for a free scalar field, one obtains

d*p 1
(2n)* p* — m* + e

(0] T{dol )b 2)} 0) = / eerea), (8.24)

For a massive spin-1 particle, following an analogous derivation and employing the field
operator for a massive vector field (cf. Eq. (8.64) of the textbook), one arrives at a similar
result, but with a polarization sum:

(O] T{A,(21)A,(24)} |0) = 2/ (;l;; o P(E=y)

_ / d4p i Zz ELElV* eip(acl —x)
(

om) p® — m? + e

Huu(p)
(8.25)

This explains why the numerator of the propagator corresponds to the polarization sum.
Note there are no cross terms in the polarization sum, as the polarization vectors basis
are orthogonal to each other by definition. Also, the summation should only include the
physical polarizations.

Start in the frame where the particle propagates along the z-axis, consistent with Eq. (8.77)—
(8.78) of the textbook. In this frame, the four-momentum reads

pli = (anaovE)a (826)
and the polarization basis vectors are
el(p) = (0,1,0,0), é5(p) = (0,0,1,0), (8.27)
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which result from choosing the reference vector

These basis vectors clearly satisfy € - r = 0. The only non-vanishing components of the
polarization sum are
el = ehel = (8.29)

i=1,2 1=1,2

Now, by Lorentz invariance, the general structure of the polarization sum takes the form

Z €, e, = = Ag,,, + Bp,p, + Cr,r, + Dr,p, + Ep,7,, (8.30)

i=1,2

where A, B,C, D, E are scalar functions, potentially dependent on p* and m?, that remain
to be determined. From the condition €' - p = 0, we must have

0=p, Y €ne, = Ap, + Bp’p, + C(r-p)r, + D(r - p)p, + Ep’r,. (8.31)

i=1,2
Grouping the coefficients gives:

py i A+ Bp’ + D(r-p) =0,

; (8.32)
r,: C(r-p)+ Ep° =0.
Similarly, with 0 =p, >~ , euey, we have
pM:A—i-sz—i-E(r-p):O, (8.33)

r,: C(r-p)+ Dp’ = 0.

From these, we deduce D = FE. Since the particle is massless (p2 = 0), it follows that
C = 0. Using the condition €' - r = 0, we also find:

0=r, Z e, = Ar, + B(r-p)p, + Dr’p, + D(r - p)r,. (8.34)

1=1,2

Again, collecting terms:

B(r- Dr® =0,
A+ D(r-p)=0
Solving this linear system yields
A2
B=""_ (8.36)
(r-p)
C=0, (8.37)
A
D=F=— . (8.38)
(r-p)
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Substituting these back into Eq. (8.30]), we now have

2
) r T'uDy +p Ty
N el = A | g + ——gpup, — L 8.39
i=1,2 g {gy (r 'p)QpHp rep (8:39)
Matching this against Eq. (8.29) determines the normalization A = —1. Therefore,
2
i 1 r TPy +p Ty
N el = G — gy + | 8.40
i=1,2 8 I (r .p)gp,lp r-p ( )

The condition "7 = 0 is equivalent to A,,-r, = 0, so we can adopt an approach analogous to

p
Eq. (8.98) of the textbook: introduce a gauge-fixing term —2%(14“-7”#)2 into the Lagrangian,

and then derive the equation of motion to verify that it yields the expected form of the
propagator.

Since W%”T?)) =2(A, -r,)r,, with the new term, the equations of motion for A, are

(_p2g,u1/ +p,up1/ - 5 ,u ) A - J (841)

To determine the propagator 1I,,, we seek an inverse tensor such that A, = 1I,,J,. By
Lorentz invariance, the general ansatz for the propagator takes the form

I, = Ag,, + Bp,p, + Cr,r, + Dp,r, + Er,p,. (8.42)

Symmetry under index exchange p <+ v requires . Proceeding similarly as in
Problem we have

g;u/ = (_p2g,ua +pupa - 5 u ) (Agozu + Bpapu + CT Ty + Dpar + Dfrapl/)

1
- _Ap2.gp,1/ + Apupy Agrur BET;L(T ' p>py 843
9 1 9 ( ° )
- Cpryr, +Cp,(p-7)r, — Cgr Ty

1
- D[gr,u( )TV - Dp2rupu + Dpu(p ' T)pu 5 rur pzz

Matching coefficients on both sides yields:

1
g,uy:_Ap2:1:> A:——2
p
A 1 1
pp, A+Dp-1)=0=|D=——"- = -
: (o) =
1 2 12 1 I, 2
ryr,—A-—Cp"—C-r" = D—(p-r)=0=C|-r"+p | =0=|C=0
¢ e e ¢
1 2 12 9 12 é‘ 1(£p2+r2)
” ¢ : & )rp  pt (rop) P’ (r-p)?
(8.44)
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where in the final line I took the limit & — 0 to enforce the condition € - = 0.

Thus, the photon propagator is given by

. 2

X 1 T Tpl,—f—pTV
i, = — |~ — ———5Dupy + L2 8.45

e = 3 | e T P P (8.45)

whose numerator precisely matches Eq. (8.40).

Unlike the photon propagator in the R, gauges, this form of propagator contains only
physical states. However, a trade-off is that gauge invariance is no longer manifest. Another
drawback is that, once a reference vector is fixed, the propagator becomes non-covariant
under Lorentz transformations.

Note in the case of QED, the Ward identity ensures that any expression contracted with the
external momentum ultimately vanishes. As a result, physical observables remain gauge-
independent, and calculations using this propagator yield the same results as those obtained
in Feynman—"t Hooft gauge (£ = 1): i[I"(p) = —ig”

p2 +ie’

8.6

Warning: this problem is one of the occasion where the position of indices on a Lorentz-
covariant object does matter.

()

The symmetry condition for a 4-dimensional matrix eliminates -l — 6 degrees of free-

2
dom.

Then, the transversality conditions k:ue(i) " = 0 impose four independent constraints, re-

moving another 4 degrees of freedom.
Altogether, these remove |4 + 6 = 10| degrees of freedom.

Choose the frame where the contravariant four-momentum is given by k" = (E,0,0,p,).
Its covariant form is then k, = g,,k” = (E,0,0, —p,).

Nz

A general rank-2 tensor € can be represented by a matrix M, which admits a unique

T
decomposition into symmetric and anti-symmetric components: Mg = +2M and M, =
T
M-M_  This decomposition respects Lorentz covariance, as Lorentz transformations pre-
serve the (anti-)symmetry structure of tensors. Consequently, the symmetric and anti-
symmetric parts correspond to distinct representations of the Lorentz group and transform

independently.

The anti-symmetric component €/{” = M, can be parameterized as

0 Qo1 Qo2 Qo3
—a 0 a a
=M, = o1 12 s (8.46)
—Qp2 —a12 0 Qa3

—Qp3 —a13 —agz 0
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Imposing the transverse condition kuefj) H' =0, we obtain

v=0: ap =0,

=1: Fag +p.a;3 =0,
Qg1 T P,A13 (8.47)

2: Eagy +p.axg =0,

v=3: agp=0.

The general anti-symmetric matrix has 6 parameters, and 3 are fixed by the above con-
straints, leaving 6 — 3 = 3 degrees of freedom. Since the anti-symmetric representation
only admits 3 physical modes, it cannot accommodate the polarizations for a massive spin-
2 particle, which has 2J + 1 = 5 states by Wigner classification.

A momentum-dependent orthonormal basis tensors EX) " that satisfy the above constraints

can be chosen as

0 p. 0 0 0 0 p O 0 0 00

1 [-p. 00 -E] 1 [0 00 o] 1fo o0 10 (8.48)

S2m| 0 00 0 [ Vam|-p. 00 —E| 2|0 100
0 E 0 0 0 0 E 0 0 0 00

which satisfy the anti-symmetric and transverse conditions and are properly normalized
via e “Ve;(j) = ¢, where ¢, = gwgyﬁeaﬁ happens to retain the same form as the original

matrices under the Minkowski metric.

Similarly, the symmetric part, €’ = Mg, can be parametrized as:

So0 So1 So2 So3

S S S S
e’g” = Mg = o1 S Sz S13 [ (8.49)
Sp2  S12 S22 S23

So3  S13 S23 533
Enforcing the transverse conditions kueg) H = 0 leads to:

v=20: ESOO — D:So3 = O,
v=1: Esy —p,s;3 =0, (8.50)
v=2: ESOQ_pzS23zou .

v=3: E803 — P.S33 = 0.
A general symmetric matrix requires 10 parameters; the transversality conditions remove

4, leaving 10 — 4 = 6 degrees of freedom. To isolate the 54, we seek a Lorentz-invariant
condition to project out the singlet representation.

Naively, one might try to further decompose Mg into a traceless part Mg — Tr[Mg|I and a
trace-only part proportional to I. However, the traceless condition }, " =0 for a (2,0)
tensor is not Lorentz-invariant. Hence, this condition can not remove a whole
Lorentz representation. The proper invariant constraint is to demand tracelessness of
the associated (1,1) tensor ¢

., = ¢"“g,,. This implies that we actually need the condition
6’5“90(“ = S0 — S11 — S22 — S33 = 0. (8.51)
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This condition removes one additional dof, reducing the symmetric ”traceless” space to
10 — 4 — 1 = 5 degrees of freedom, while the "trace-only” part spans the singlet.

A basis for the symmetric traceless € space can be taken as:

0000 00 0 0
go_ L o0 ro) L 1]01 0 0
LoAalot o0 T4 00 -1 0]
0000 00 0 0
0 p, 0 0 00 p. 0
e 1 pZOOE’EZV_l 000 0f
5m |10 0 0 0 5m |p. 0 0 F
0 E 0 0 00 F 0
p. 0 0 p.E
21 0 —im? 0 0
HV: - 2
% \/;m2 0 0 —im® o | (8.52)
p.E 0 0 E?

each of which satisfies the symmetric, “traceless”, and transverse conditions, and is properly
normalized.

The trivial singlet €]” is proportional to the metric tensor ¢" but cannot satisfy the trans-
verse condition}

(c) Since the traceless symmetric, anti-symmetric, and ”trace-only” components only transform
among themselves under Lorentz transformations, each forms an irreducible representation
of the Lorentz group. The previous analysis reveals that the ”traceless” symmetric part has
5 degrees of freedom, corresponding to spin-2; the anti-symmetric part carries 3 degrees of
freedom, corresponding to spin-1; and the trace-only part has a single degree of freedom,
corresponding to spin-0.

Thus, to propagate the physical degrees of freedom of a spin-2 field, the polarization tensor
must obey symmetric, transverse, and ”traceless” conditions.

*More exactly, spin-0 does not have a well-defined notion of polarization.
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Side Remark: What we have done are essentially the decomposition of the Lorentz
group’s irreducible representations into those of the rotation group, reflecting spin:

303=5;03,01.

In this sense, a spin-2 particle can be thought of as a ”composite” of two spin-1

particlesﬂ
Indeed, one can construct the spin-2 polarization basis tensors directly by taking outer

products of spin-1 polarization basis vectors. For instance, using the polarization
basis from Eq. (8.30) and Eq. (8.31) of the textbook:

1
(p.,0,0, E). (8.53)

el =(0,1,0,0), €5 =(0,0,1,0), €f = —
m

The spin-2 polarization tensors in Eq. (8.52)) can be written as:
il
g — & (—:”),
v =L (4@ +4®d
5
et = — e (X) e — € e”),
p = (4@ -4 @
5 (
==l €7 + e e”) , 8.54
= (4@ + 4 @ 550
2l
e = — (e e + e e”),
4 AS ® LT € ® 2
v ]‘ v v v
q’ = % (e’1‘®61 —i—eé‘@eg —26‘L‘®6L) ,
where the coefficients are exactly the Clebsch—Gordan coefficients. These are clearly
symmetric under the exchange of the two sides of the outer products. The transverse
conditions follow trivially because the spin-1 polarization basis vectors themselves

obey transversality. Their tracelessness is evident, since the trace of an outer product
of two vectors corresponds to their inner product (with respect to the metric tensor).

“Just suggesting its algebra, not its fundamentality.

(d) The basis for the physical polarization tensor corresponding to a massless spin-2 particle

propagating along k, = (£,0,0, E) are the two tensors

Nz
€12

appearing on the first line of

Eq. (8.52). The remaining polarization tensors can not be properly normalized anymore,

as their normalization products vanish.

Another way to identify which polarization tensors become ill-defined in the massless limit is
by inspecting Eq. (8.54)). Since, for a spin-1 particle, the longitudinal polarization e} — p
up to normalization becomes ill-defined in the massless limit and only €}", avoid involving
¢ in their outer products, only €}y remain physical in the massless limit.

For a spin-3 field, we embed it into a rank-3 tensor.

We shall impose the symmetric condition. In four-dimensional spacetime, this left with

70



Chapter 8. Spin 1 and gauge invariance

3+4-1
3

Next, the transverse condition removes another 10 (since contraction with a four-momentum
vector yields a symmetric rank-2 tensor, which has 10 degrees of freedom).

> = 3% = 20 degrees of freedom.

Finally, the "traceless” conditions (any contraction over two indices vanishes) remove 3
more degrees of freedom.

Altogether, we are left with \ 20-10—-3=7 \ physical degrees of freedom, precisely match-
ing the expected count for a spin-3 field, which according to the Wigner classification has
2J+1=2x3+1=7 degrees of freedom.

8.7

Suppose we now have a Lagrangian with a cubic interaction of h and undetermined coefficient
a:

1 1
Ly = (1 +5h+ §h2 + ah3> . (8.55)
Under the transformations
b = hy, + 0,7, + 0,1, + 7 04hy,, + (0,7 ) hay + (0,7%) g, (8.56)
we have
h — h+ 20,7, +7"0,h + 2(8M7r°‘)hm, (8.57)
and
¢ — ¢+ 70,0. (8.58)

The coefficient a is fixed by requiring cancellation of terms quadratic in h and linear in 7.
Thus, we only need to collect terms linear in 7 and at most O(hQ). The extra terms compared
with Eq. (8.139) of the textbook are

1 1 1
£4 — '64 + Zhﬂ-a(aah)qS + §h2ﬂ-a(aa¢) + (auﬂ-a)h,uagb + éh(a,uﬂ-a)huaqb + 6ah2(8a7ra)¢ +oee

1 o 1 o
=L, — §h2(8a7ra)gz§ + (0,7 had + §h(au7T Vet + 6ah* (0, )p + - -+

(8.59)
where - - - contain terms that are (9(7r2) or O(h?’). Requiring cancellation of the h* terms gives
1
—§h2(8a7ra)gb + 6ah*(0,m,)p =0 (8.60)
1
=—. .61
a= (8.61)

The terms (9,7%)h,,¢ and $h(9,7*)h,,¢ remain because Eq. (8.138) of the textbook does
not include all O(hfw) interactions. To fix this, one must also add —}L(hw)Qqﬁ, and to obtain
the full set of O(hi,,) interactions, include additional Lorentz-invariant cubic terms such as

bh(hlﬂj)2¢ _l_ Chuyhuahap¢7
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To see that explicitly, redo
/ 1 1 2 1 2
(14 Zh+=n>—= . 62
L ( +2h+8h 4hW ¢ (8.62)
The transformation Eq. (8.135) and Eq. (8.137) of the textbook are
¢ — ¢+ m,0,0, (8.63)
hyy = by + 0,7, + 0,7, + T 0uh -

We only write out the additional terms compared to the Eq. (8.139) of the textbook, and are
at most O(Tt’l):

/ ;1 1
Ly — L — Zhiywaaa¢ = 5 (0, + Oy, + TaBalyu) + -
1 1 1
- 'C3 + Ehuu(aah;w)ﬂ-agb + thw(aaﬂ-a)gb - igbhuu(a,uﬂ-u + 8V7Tu + 7Tozaozh,ul/) +e (865)
, 1
= £3 + Zhiu(aaﬂ-a>¢ - (bh,uy(a;ﬂru) ey

where the last step follows from the fact that —%¢hw (0,m, + 0,m,) is symmetric with respect
to p <> v. Note that the last term cancels exactly one of the extra term in Eq. (8.59).

To determine b and ¢, we include higher-order transformations of h,,, (cf. Eq. (8.140) of the
textbook). The relevant terms are

/ ;1 1
‘64 — £4 + Zhiu(aaﬂ-a)qs + éh(auﬂ-a)huaqs - thuu(@uﬂ-a)hau

+ 2bg[hh,,, (0,7, + 0,m,) + (0,m,) 5]
4l Glhyo (00T, + 0,m4,) + (0,74 4 0™y ) hoy) + cd(0,m, + 0,7, ) hyoliy, + - -
1 1
= ‘C4 + thw(aaﬂ-a)qb + §h(a,uﬂ-a)hua¢ - ¢h,u1/(a,u7ra)hm/
+ 2b¢[2hh,,, (0,7,) + (0,7, ha] + 2¢h,d[hya(0am, + 0,ma)] + 2¢6(0,m, ) hya oy + - -+
1 1
D)0+ LD, 6 — Oy (B,
+ 2b¢[2hhw/(auﬂ—u> + (auﬂ-u)hfw] + 4Ch,uu¢hua<aa7ru> + 20¢(au7ru)huaha,u + e
1 1
= £4 + Zhil/(aaﬂ—a)gb + §h<a,u7ra)hua¢ - ¢h,uu<8,u7ra)hau
+ 2b¢[2hhuu<ap,ﬂ-u) + (al/ﬂ-l/)hil/] + 6Ch,uu¢h1/a(aa7ru) +eeey

=L+

(8.66)

where I have repeatedly using the symmetric property under indices permutation. Now, we can
observe that choosing

h— -3 (8.67)

ensures the cancellation of the terms

1 1
Zhil/(aaﬂ-a)gb + §h(6u7ra)hﬂa¢’
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and choosing

(8.68)

=

ensures the cancellation of the term

_¢huu (auﬂ—oz) hoa/ .

Thus the interaction Lagrangian, up to cubic order in h,,, is

1. 1., 1 1, 1
= 1 — — _ = _— —_ =
c ( +5h+ g = Jhwh + gh = o

Now, note that

1
Al P + ghwhmhw + O(hfw)> o|.  (8.69)

h = h,, = Tr(h), (8.70)
Ryl = Tr(h?), (8.71)
Ryshahio, = Tr(B?), (8.72)

where the h in the trace is a matrix, it should not be confused with h,,,ﬂ
Using the identity

— det(g,,) = —det(n,, + h,) = g~ Trlognth), (8.73)
and expanding for %, < 1, (weak-field approximation),
R
log(n+h) =h— 5 + 3 + O(h4). (8.74)

Eq. (8.145) of the textbook can be expanded as

L= \/— det(nw, + hw,)gb

— exp {_% <Tr(h) - %Tr(lf) - % Tr(h°) + Tr(O(h4)))1 ¢

=/ det(n){l + %Tr(h) — %lTr(hz) + éTr(hS)

1
+ —

2

(% Tr(h))2 - gmm Tr (1)

1 /1 o
tg (5 Tr(h)) +0(h )}¢ (8.75)
1

1+ % Tr(h) + (Tr(h))* — iTr(hz)

+ 5 (T = Tl T (1) + 5 (') + O(h“)] ¢

11 1 1 1 1
_ (1+§h+—h2——h hyw + —=h° — —hh b, + =hhyoh +0(hfw))¢7

] 4 pv!tuy 48 ] pv!tuy 6 pv!tvalbap

where in the last line I wrote out the traces explicitly using Einstein summation (cf. Eq. (8.70)—(8.72)).
This matches Eq. (8.69).

4T hough unfortunately quite often share the same notation. I believe it should be clear that whenever the
h appears in a Trace or log, I mean it as a matrix.
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8.8

Starting from a totally symmetric rank-3 tensor Z,,,,, decompose it as
T
Zye = Zyya + 0Ty + 0,Toy + 00Ty, (8.76)

with 8MZ3W = 0. A massive spin-3 field has 7 polarizations: 2 in the transverse components
and 5 in the longitudinal components ,,. Since Z,,, is totally symmetric, 7, is symmetric

as well. We further decompose 7, as

nZ
T = WZV + 0,0, + 0,0, (8.77)
with (9M7T§V = 0. Then decompose o, as

=0} +0,0", (8.78)

Ou

T
where 0,0, = 0.
The most general dimension-4 kinetic terms one can write for a rank-3 tensor 7, are

L=0Z,,,07 6 +bZ,,00,05 7,50 + 2020+ dZ00,0,Z 10 + €2,0,0,Z, + m* (2 210+ y Z3),

(8.79)
where Z, = 7,0 = Zyou = Zayy 18 the partial trace of the tensor. Also,
T=n" + 20,0, = "+ 200", (8.80)
Zo =2 e = Z§+28u7rua+8a7r = Z§+2Daa+28a8uau+8a7rT+2D8aaL = 77 40,77 +2(0ol+300,0").

(8.81)

Consider the mass term first:
Zi,,a = (ng + 0y Tye + 0, Tpy, + (9a7rw,)2
= 4(0,0,04 + 0,040, + 0,0,0,)" + - -~
= 4(0,0,0% + 9,0,00 + 0,0,0 +30,0,0,07)° + - -- (8.82)
= 4(0,0,00)" + 4(0,0,00 )% + 4(0,0,00 ) + 36(0,0,0,0)" + - --
=120 26F — 1080 P + - - -,

where --- contain terms with no more than two derivatives. I repeatedly used 8M7TZ,, =0

3!

s = 3 when

and 8MUZ = 0, and integrated by parts in the last line. Note the extra factor

contracting (GMGVOQUL)Z arises because the tensor is totally symmetric.
Next,

72 = (Z5? —7"0r" + 422 00% — 127" 20 + 40l 4 300,0")?
= —12n" P + 4(00l)? + 36(0d,0")° + - -- (8.83)
= —1277O0%" + 4U£DQU§ — 360 0" + - - - .

Comparing the two mass terms and requiring cancellation of the dangerous four-derivative (or
higher) pieces,

T2 T 2
0] : m~(12 4y) =
{UO‘ Oa (122 +4y) =0 y=—3z|, (8.84)

oot m?(—108z — 36y) = 0
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and
—12mPyn’ %ot =0 = : (8.85)

for a nontrivial mass term, indicating that Wf,, must be traceless, as expected (confirming

Problem .

Now turn to the other terms. For later use, first compute
042 e = Oy + 0,0,y + 0,0,
= Or,,, +2(00,0, + 30,0, + 0,0,0,0,) (8.86)
= Only + 200,08 + 00,08 +300,0,0").
Also,
0,0, 7 o = 2(F 0l + 30%°0,0"), (8.87)
and
0,7, = 60%c" (8.88)
® 2,17,

Z,ul/aDZ,u,z/a = (nga + a,uﬂ_z/a + al/’/Ta,u + 8a7ruu)|:|(ZZ,:/a + a,u,’/rua + auﬂ_au + ao/”,uy)
= ZZWDZ;FW + (0uTya + Oy + 007, ) (0, Ty + 0y Tay + OaTy)

= ZZVOLDZZVQ + [auﬂga + 81/7.‘-5# + aaﬂ-fu + Q(a,uauo-a + auaao-u + auaao-,u)]l:'[' ’ ]
= Zpya 020 — 3P0 + [2(0,0,00 + 0,040, + 0,040, + 30,0,0,0")0]: -

=z 0z 3zl OPrl, + 1200 0% — 1080 0% ™.

puro pro
(8.89)
[ ] Z“,,aauagz,,ﬁa:
2
ZuvaauaBZVBa = _(aulea)
= —[Orl, +2(00,0k +00,0. +300,0,0")] (8.90)
= —nl OPnl 4+ 80l Pol — 360 0"
e 2,027,
Z,0Z, = [ZF + 200 4 300,002 + 2(0ol + 300,0")] (5.91)
= 7'0z8 + 42 0% 4+ 40l D0l — 36000 ". '
© Z2,0,0,Z,,,:
700,0, Z e = 2125 + 2(0op, + 300,0")(D*0p + 30%0,0") (592)
=22 P00l 4+ 4670l — 360 0% . '
¢ 2,0,0,Z, :
Z,0,0,Z,=—-2(0,7,)°
R (OuZ) (8.93)

= —720 0%,

where the extra factor of 2 arises because there are two inequivalent ways to take the
partial traces on the two sides.
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Requiring cancellation of the dangerous four-derivative (or higher) terms,

el —3a—b=0 b= —3a
olTPel . 120+ 8b+4c+4d =0 c=—3a
o’d%¢”: —108a — 36b — 36¢c — 36d — 72e =0 d=—2c
Zr'0% . 4e+2d=0 c=2e
Fix the overall normalization by imposing the equation of motion for ng,
@O+m*)Z},. =0,
and require positive energy. These fix
1 3 3 3 1 3
:—b:—— :——d: = — = — :——‘ .
a 2’ 270 27 3’6 47‘7" 27y 2 (895)
Hence,
1 3 3 3 1 5. .9 9
L= §Z;u/aEIZ/u/Oz — §ZWQ(()M3/BZVBO¢ - §Zo¢|:|Zoc + 3Zaa'uaVZ/“,a - ZZuﬁuQ,ZV + §m (Z,ul/a - SZQ) .
(8.96)
8.9

As derived in Problem , Eq. (3.1), the generalized equation of motion for a Lagrangian with
up to two derivatives is

%~ () 0 (o) = 40

i

Starting from the Lagrangian
L = —a¢0¢ — bpI*¢ = a(9,0)* — b(Dg)*, (8.98)

for arbitrary constants a and b. We ignore the mass term, which is a trivial extension. The ill
behavior of such a Lagrangian is already evident from its equation of motion:

O(a+b0)p =0 = alp = —b%¢. (8.99)

One can repeatedly apply the equation of motion, relating the two-derivative piece of the field
to arbitrarily high derivatives.

We now generalize Noether’s theorem to higher derivatives. Much of the setup follows
Problem 3.1 Under global spacetime translations ¢(z) — ¢(z + £) with infinitesimal £”, and
using Eq. (3.1]), the on-shell variation of the Lagrangian (for terms up to second derivatives of
¢) isfield ¢ is

5L oL 3o L 6(0.0)\ oL o
e =0 |(aaae) 2 oma o)~ (eoamw)) €
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Chapter 8. Spin 1 and gauge invariance

Here ;gil = 0,¢ and 5((%,,@ = 0,0,0.

Since L is itself a scalar under translations, £(z) — L(z + &), we also have

5LC
5o = 0L (8.101)

Equating the two expressions yields the energy—-momentum tensor

oL oL oL
= ——0 2————0,0,0 — 0y | ===, — gL 8.102
7:LV 8(8u¢) V¢ + 5(53“8&(;5) v oaqb « <3(a,ﬁa¢) V¢) g;w ( )

Plugging Eq. into this,
8(8ﬂ8ﬂ¢)
8(8u8a¢)
= 2a(9,0)(0,0) — 45(06) 95,9500, 00 + 260, [(00)95,9500,%] — Gur[a(050)* — b(O)’]
= 2a(9,0)(9,¢) — 4b(0¢)8,0,6 + 2b9,, (D)8, 8] — g,.[a(056)° — b(O¢)*]

= 2a(9,0)(9,¢) — 2b(0¢)8,0,¢ + 2b(9,06)(9,0) — g, [a(05¢)* — b(O)?].

0(05050)

T = 2a(9,9)(9,¢) — 4b(¢) 9(9,0.0)

0,06 + 200, (<D¢> é’ycb) T g la(@50)* — b(06)?

(8.103)
The energy density is
&= 760
= a[(0,9)° + (V)*] +b[~2(0¢) (37 ¢) + 2(8,0¢)(0,0) + (0¢)*]
=a[(0,¢)* + (Vo)’]
+ 0 [=2(070) + 2(V?¢) (07 0) + 2(0;9)(0,0) — 2(0,V$)(0,0) + (97 0)* + (V?¢)* — 2(076)(V*9)]
=1a[(0,0)* + (V)] + b[— (07 9)* + 2(07 9)(0,0) — 2(0,V°8)(0,0) + (V?0)?] |,

(8.104)

which contains unavoidable negative contributions. Unlike the case of a spin-1 vector field, a
scalar has no gauge redundancy to impose additional constraints, so the ghost term cannot be
removed.
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Scalar quantum electrodynamics

9.1

We use p; to denote the momentum of the incoming photon, p, that of the incoming scalar, p;
that of the outgoing scalar, and p, that of the outgoing photon.

(a)

The s-channel gives

o (D1~ €14 2py - €1)(py - €4+ 2p3 - €)) (9.1)

Z.MS = —Z€ 2 9
1+ 2p1 - po

where we use the fact that the electrons are on-shell. The t-channel gives

iM, = —ie? (p1- € — 22932' €1)(Ps - €1 — 2py - €1) (9.2)
Pi —2p; - p3
Lastly, the seagull vertex gives
iM, = 2ie’g,,éle;” (9.3)

To check Ward identity, we replace e} with p} and summing all the diagrams, we have
M+ M, + My = —e*e*(py + 2p3 + pa — 2p, — 2p1)" = 0, (9.4)

and the Ward identity is satisfied.

Now using the fact that the physical polarizations of the photon must be orthogonal to the
photon’s momentum, we have p; - ¢, = p, - €, = 0. Furthermore, in CM frame, we have
p; = —py and p; = —p, such that py - €6, = p3 - €, = 0. We also know the on-shell photon is
massless such that p] = pj = 0. We can thus simplify the matrix element such that

iMyyy = iM +iM, + 1M,

. L F 9.5
— 92 [(Pg 61)(292 64) Y- EZ} ( )
P1-Ps3

In the CM framea P11 = (Eb 07 07 El)? P2 = (EQa 07 07 _E1)7 b3 = <E27 _El sin 97 07 _El COS 9)7
and py, = (E}, E;sin6,0, F| cos ), where E, =  E? + m?i, and 6 is the angle between the

incoming scalar and the outgoing photon. We also have dfgse = |M?
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Chapter 9. Scalar quantum electrodynamics

(c) For eL" polarized in the plane of the scattering, we choose the basis eff = (0,1,0,0). For
the outgoing polarization, we choose effm* = (0,cos 6,0, —sin#), polarized in the plane of
the scattering, and €2“** = (0,0, 1,0), polarized transverse to the plane of the scattering.

” )

outl*) 2

|Mzn|2 _ 464 (' (p3 € p)(p; € + Ein . 6outl*
1" /M3

= 4¢* (<E1 Sl 9)(_2El sinf) — COS 9)2 +0
E\FE, + Ej cosd

_ g <E1 + B, 0050)2

in out2x
+ ‘ (pS € )(pQ € ) + Ein . 6out2>k
P1-P3

E5 + E,cosf
(9.6)
d) For €™ polarized transverse to the plane of the scattering, we choose the basis € =
1 p
(0,0,1,0). Follow the same calculations as in last part, we have
"/\/ltransverse’2 = 464 (97)

(e) Summing up the (c¢) and (d), we have

(9.8)

M = 46! (1+ (El + E5cosf 2)

E, + Ey cosf
Doing the replacement from part (a), we have

IM? = M+ M+ M+ MM+ MM+ MM+ MM+ MM+ MM,
64[(]71 +2py)° (P4 £ 2p3)* | (p1— 2p3)° (P4 — 2p2)°

N (2p1 - p2)° (2p1 - ps)° o
4 2(291 +2py) - (P — 2p3)(ps + 2p3) - (ps — 2po) I 8(P1 + 2py) - (4 + 2p3)
(2p1 - p2)(—2p1 - p3) (2p1 - p2)
+ 8(131 — 2p3) - (P4 — 2py)
(—2p1 - p3)

L AES  A(m? — E(Ey + B, cos6))? 2(E3(1 — cosb) — 2(Es — E? cosh))?

=<l E? * E}(Ey + E, cos ) 16 E}(Ey + Ey)(Ey + F cos )
2(4E3 + F{(1 — 5cos6) — 4E,(E, + E5cos0)) N 2(4F3 4+ E7(1 — 5cos6) — 4F, (B, + E,))
E\(E, + E)) E\(E; + Ey cost)
4

a E%(Ez + E1)2(6E2 + I, cos 9)2 (4E3(E1 N E2)2((E1 + Bacos 9)2 + (B + By cos 9)2))

4e!
— (Bst Eroon) ((Ey + Eycos6)® + (E, 4+ E; cos6)?)
2 1

(9.9)
This is the same as equation [9.8] Thus, the replacement trick works.

(f) Such replacement trick only works for a Abelian massless spin-1 particle. Also, notice that
to use such replacement, we must include the unphysical polarization as well. This is the
reason why we must do the replacement from part (a).
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Fig. 9.1: O(e") light-by-light scattering diagrams

9.2

(a) This is a O(e®) diagram. We shall start the counting from O(e') first since O(e?) is
the lowest order of light-by-light scattering happens. At (’)(64), there are the following 5
diagrams listed in Fig. 9.1}

Now let’s consider the diagrams at O(e°). First notice that for each of the photon line,
it’s possible to have the following vacuum polarization correction diagrams shown in Fig.
18.1] (i) and (ii) that each itself is at O(e?). Similarly, for each of the scalar line, we can
attach the correction as Fig. (iii), (iv) and (v). For each of the 3-point vertex, we can
attach with the tadpole in Fig. (vi), where the shaded dot means a 3-point vertex.
Then, there are also corrections of which a photon line either starts from a scalar line or
a 3-point vertex and ends at either an another scalar line or an another 3-point vertex as
shown in Fig. (vii), (viii), and (xi), where the big shaded dot refers to the rest part
of the diagram that we don’t draw and the small shaded dot refers to a 3-point vertex.
Notice for (viii) and (xi), it’s not necessary that the scalar line must start from the same
vertex as the photon line. (viii) should be interpreted as starting from a 3-point-vertex and
ending at a scalar line while (xi) should be interpreted as starting from a 3-point vertex
and ending at another 3-point vertex.

Now we can do the do the counting. Starting from the diagram I. To modify it to order
O(e°), we can do the following modifications: for each of the 4 photon lines, we can either
modify it with diagram (i) or (ii); for each of the 4 scalar lines, we can either modify it with
diagram (iii) or (iv) or (v); for each of the 4 3-point vertexes, we can attach them with the
tadpole diagram (vi); for any two of the 4 scalar lines, we can connect them with a photon
line ((vii)); we can connect anyone of the 4 3-point vertexes to anyone of the 4 scalar lines
with a photon line ((viii)); we can connect any two of the 4 3-point vertexes with a photon
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Fig. 9.2: O(e?) correction

line ((xi)). We summarize these operations we can do with the diagram I in Eq. (9.10)).

4P — (i)/(i1) : 4 x2 =28,
4S8 — (idi) (i) (v) : 4 x 3 =12,
4V — (vi) : 4,
g 4 4 4l
48 — (vii) 1 Cy = (2) ~ o1 6, (9.10)

4V — (vidi) — 4S5 : 4 x 4 = 16,
N (4 A
total: 8 +12+4+ 6+ 16 + 6 = 52,

where P refers to a photon line, S refers to a scalar line, and V refers to a 3-point vertex.
We thus conclude that for O(e®) correction from diagram I, there are 52 diagrams at O(e°).
Clearly, the diagram II just flips the final states compared with the diagram I and should
also have 52 diagrams that can have O(e°) correction. For diagram IIT and IV, we again
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N
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(1)

Fig. 9.3: O(¢®) diagrams with 3 external photon lines

can summarize the operations as in Eq. (9.11]).

4P — (i)/(i1) : 4 x2 =28,
3S — (i) (i) (v) : 3x3=09,
2V — (vi) : 2,
3 3!
3S — (vid) : (2) = o = 3,
2

V — (vm)—?)S 2 x3=06,
(

i) C2— (;) 1,

2V —

total: 8 4+9+2+3+6+ 1 =29,

Thus, the diagram IIT (IV) shall have 29 diagrams with correction at O(e®).

diagram V, we summarize the operations in Eq. (9.12)).

total: 84641 =15,

Thus, the diagram V have 15 diagrams with correction at O(e°).

(9.11)

For the

(9.12)

Lastly, there are also

extra diagrams, which can not be gotten from combining an O(e') diagram with an O(e?)
diagram but from combining two Oﬁ diagrams like the ones in Fig. and got 4 extra

diagrams at O(e°) as shown in Fig.

In total, at O(e’), we have 52 x 24 29 x 2 + 15 4 4 = 181 diagrams.

We can continue this way of counting to (’)(68). First, we shall notice the number of lines
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|
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Fig. 9.4: O(e®) light-by-light scattering diagrams by combining any two O(e”) diagrams in Fig.

9.3

or 3-point vertexes added by above operations are summarized in Eq. (9.13).

(1) : 425 + 1P + 2V + 0V,

(i3) : +1S + 1P + 0V + 1V,

(4ii) : +2S + 1P + 2V + 0V,

(iv) : +1S + 1P + 0V + 1V,

(v) : 425 + 1P 42V + 0V, (9.13)
(vi) : +1S + 1P — 1V + 1V,

(vii) : +2S + 1P + 2V + 0V,

(viid) : +1S + 1P + 0V + 1V,

(zi) : +0S + 1P — 2V +2V".

For completeness, we also denote the number change of 4-point vertex with V.

To make the O(e®) out of the O(e°), let’s explore the O(e®) diagrams modified from the
diagram I first. Notice the 4 +4 + 4 + 6 = 18 diagrams generated by operation I —
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()/(4i1)/(v)/(vii), can be further corrected as shown in Eq. (9.14)):

I—(i)/(iid)/(v)/(vii) [S =6, P =15, V =6, V' = 0] followed by (18 x ---):

5P—(i): 5 [S=8, P=6, V=8 V =0,

5P—(ii): 5 [S=7 P=6 V=6V =0,

6S — (iii)(v): 6x2=12 [S=8, P=6, V=8, V' =0,

65— (iv): 6 [S=7 P=6 V=6V =1],

6V — (vi): 6 [5:67,P:6‘6,V:5,V:1], (9.14)
e\ 6 U . - . I

68—(1}21).02—(2>—4‘2'—15 [S=8, P=6, V=8,V =0,

6V — (viii) —6S: 6x6=36 [S=7 P=6,V =6,V =1],

(
: 6 6 6! /
6V — (zi): Cf = =15 [S=6, P=6,V =4, V' =2,

2 4!2!
total: 18 x (5+5+12+6+ 6+ 15+ 36 + 15) = 1800.

Then, the 4 + 4 + 16 = 24 diagrams generated by operation I — (i7)/(iv)/(viii) can be
further corrected as shown in Eq. (9.15)):

I—(ii)/(iv) /(viii) [S=5, P=5 V=4, V' =1] followed by (24 x ---) :

5P — (i) : (S=7 P=6, V=6V =1],
5P—(ii): 5 [S=6, P=6, V=4, V' =2,
5S — (iti)(v): 5x2=10 [S=7 P=6,V =6, V' =1],
55 — (w) 5 [S=6, P=6,V =4, V' =2],
4V — 4 [S=6, P= = =2
_ 2 _ _ _ r_

55 — (vii) : (2 = 30 10 [S=7 P=6, V=6V =1],
4V — (viii) —5S: 4x5=20 [S=6, P=6, V=4, V' =2|,

4\ 4 B B B ;o
AV — (xi) : _<2>_ﬁ—6 S=5 P=6, V=2 V=3

total: 24 X (5454 10 4+ 5+ 4+ 10 + 20 + 6) = 1560.

The 4 diagrams generated by operation I — (vi) can be further corrected as shown in Eq.
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(19.16)):

I—(vi) [S=5, P=5,V =3, V' =1] followed by (4 x ---):
5P—(i): 5 [S=7 P=6, V=5 V =1],
5P —(ii): 5 [S=6, P=6,V =3, V' =2,
58 — (#id)(v) : 5x2=10 [S=7, P=6, V=5 V' =1],
58 —(iv): 5 [S=6, P=6, V=3,V =2,
— ) = P: = ,:
3V—(vi): 3 [S 56, 5'6,‘/ 2, V 1, (9.16)
5 _ Y . _ _ r
55 — (vii) CQ—<2)—3'2' 0 [S=7 P=6,V=5 V =1],

3V — (viii) =55 : 3x5=15 [S=6, P=6, V=5 V' =2

|
3V — (i) : CS:@):%:B [S=5 P=6, V=1 V=3,

total: 4 X (5+5+10+5+3+ 10+ 15+ 3) = 224.

The 6 diagrams generated by operation I — (xi) can be further corrected as shown in Eq.
(19.17)):

I—(zi) [S=4, P=5, V=2 V' =2] followed by (6 x ---):
5P—(i): 5 [S=6, P=6, V=4,V =2
5P—(it): 5 [S=5 P=6, V=2 V' =3
48 — (iii)(v): 4x2=8 [S=6, P=6, V=4, V' =2],
48 —(iv): 4 [S=5, P=6, V=2 V' =3
2V —(vi): 2 [S=5, P=6, V=1 V' =3 (9.17)
48 — (vii) : (ng(;L :T;!:6 [S=6, P=6, V=4, V' =2,
2V — (viii) —4S: 2x4=8 [S=5 P=6, V=4, V' =3,

OV —(zi): Ci=1 [S=4, P=6, V=0,V =4,
total: 6 x (5+5+84+4+2+6+8+1) =234

Therefore, the number of O(e®) diagrams that can be gotten by correction on diagram I
(IT) is 1800 + 1560 + 224 + 234 = 3818.

Similarly, we can apply the operation on type /1] and I'V diagrams. The 44+3+3+43 = 13
diagrams generated by operation I11—(i)/(i1i)/(v)/(vii), can be further corrected as shown
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in Eq. (9.18):

I11—(i)/(iii)/(v)/(vii) [S=5, P=5, V =4, V' =1] followed by (13 x --+) :

5P—(i):5 [S=7, P=6, V=6 V' =1],
5P — (i) [S=6, P=6, V=4, V' =1],
55 — (iii)(v): 5x2=10 [S=7, P=6,V =6, V' =1],

5
)

59— (iv): 5 [S=6, P=6, V=4, V' =2,

( 4 [S=6, P=6, V=3 V =2
N & 51 B B B ;o
55 — (vii) : C’2—<2> 391 =10 [S=7, P=6,V =6, V' =1],
4V — (viii) —5S: 4x5=20 [S=6, P=6, V=4, V' =2,

(

2 212!
total: 13 x (5+54+10+5+4+ 10+ 20 + 6) = 845.

4l
AV — (xi) : c§:<4)=—:6 [S=5 P=6 V=2 V=3

Then, the 4 + 3 + 6 = 13 diagrams generated by operation 11 — (i7)/(iv)/(viii) can be
further corrected as shown in Eq. (9.19):

I11—(ii)/(iv)/(viii) [S =4, P=5, V =2, V' =2] followed by (13 x -+ ) :

=1, V' =3, (9.19)

viii) —4S: 2x4=8 [S=5, P=6, V=2 V' =3,
w): C2=1 [S=4, P=6, V=0,V =4,
total: 13 x (b+5+8+4+2+6+8+1)=507.

The 2 diagrams generated by operation 11 — (vi) can be further corrected as shown in Eq.
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(19.20):

IIT—(vi) [S=4, P=5V =1, V' =2] followed by (2 x ---) :
5P—(i): 5 [S=6, P=6, V=3,V =2

5P —(ii): 5 [S=5, P=6, V=1 V' =3
(

48 — (iid)(v) : 4x2=8 [S=6, P=6, V=3, V' =2,

45 —(iv): 4 [S=5 P=6 V=1 V' =3

1V —(i): 1 [S=5, P=6, V=0, V' =3, (9.20)
45—(02'@)103:(;1):%:6 [S=6, P=6, V=3, V' =2

1V — (viii) =4S : 1x4=4 [S=5 P=6, V=3,V =3,

1V — (x4) : 0,

total: 4x (5+5+84+4+1+6+4+0)=132.

The 1 diagrams generated by operation 11 — (xi) can be further corrected as shown in Eq.
(19.21)):

II1—(xi) [S=3, P=5 V=0, V' =3] followed by (1 x ---):
5P—(i): 5 [S=5 P=6 V=2 V=3,

5P —(ii): 5 [S=4, P=6, V=0, V' =4,
(

35 — (iii)(v): 3x2=6 [S=5 P=6 V=2 V =3
3 —(iw): 3 [S=4, P=6, V=0,V =4,
0V — (vi) : 0, (9.21)
35 — (vii) 023:(3):3—!: [S=5 P=6 V=2 V =3
2) 21! ’ ’
0V — (viii) — 35 : 0,
0V — (i) : 0,

total: 1 X (5+5+6+3+0+3+0+0)=22.

Therefore, the number of O(e®) diagrams that can be gotten by correction on diagram I11
(IV') is 845 + 507 + 132 + 22 = 1506.

Next, we can apply the operation on type V diagram. The 4 +2 + 2+ 1 = 9 diagrams
generated by operation V' — (i) /(iii)/(v)/(vii), can be further corrected as shown in Eq.
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(19.22)):

V—(z’)/(z’ii)/(v)/(vz’z’) [S=4, P=5 V=2 V' =2 followed by (9 x ---) :
—(4) : [S=6, P=6, V=4, V' =2],
5P —(ii): 5 [S=5 P=6 V=2 V=2
— (#ii)(v) : 4x2=8 [S=6, P=6, V=4, V' =2,
4S —(iv): 4 [S=5, P=6, V=2 V' =3
—(vi): 2 [S=5 P=6,V=1,V =3] (9.22)
4 4! )
— (vii) : C _(Q)Zﬁ:(j [S=6, P=6, V=4 V =2]|,
2V — (viii) —4S: 2x4=8 [S=5 P=6, V=2 V' =3
2V — (zi): Ca=1 [S=4, P=6, V=0, V' =4,
total: 9x (5+5+8+4+2+6+8+ 1) =351.

Then, the 4+2+0 = 6 diagrams generated by operation V — (i7)/(iv)/(viii) can be further
corrected as shown in Eq. (9.23):

V—(ii)/(iv) / (viii) [S = 3,

5P — (i) : ,
5P —(ii): 5 [S=4, P=6, V=0,V =4
3S — (iii)(v): 3x2=6 [S=5, P=6, V=2 V' =3
38 —(iv): 3 [S=4, P=6, V=0,V =4,
0V — (vi) : 0, (9.23)
35 — (vii) : CF = 3)—3—!: [S=5 P=6 V=2 V=3
2) 21!

oV — (1) : 0,
total: 6 x (5+5+64+3+0+3+0+0)=132.

No diagrams can be generated by operation V' — (vi).
No diagrams can be generated by operation V' — ().

Therefore, the number of (’)(68) diagrams that can be gotten by correction on diagram V'
is 351 4 132 = 483.

Next, we can apply the operation on type VI diagram. The diagrams generated by adding
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operation onto VI are listed in Eq. (9.24)):

5P — (i) : ,

5P — (i) : 5 [S:7,P:6,V 6 —1],

6S — (iii)(v) : 6x 2 =12 [S:S,P 6, V=8 V'=0],

6S—(iv): 6 [S=7, P=6, V=6,V =1],

6V — (vi): 6 [5:67,13:6'6,&/:5,\/:1], (924
6 _ _ _ o !

6S — (vii) 02—(2)—4!2!— 5 [S=8 P=6, V=8 V =0,

6V — (viii) —6S: 6x6=36 [S=7 P=6,V =6,V =1],

total: 1 x (5+5+4+1246+6+ 16 + 36 + 15) = 101.

Therefore, the number of 0(68) diagrams that can be gotten by correction on diagram VI
is 101.

Next, we can apply the operation on type VI diagram. The diagrams generated by adding
operation onto VI are listed in Eq. (9.25)):

2] followed by (1 x ---):
]

ot
s
|
o
)
Il
o
s
I
o
<
I

(4) : 4, V_ :
5P—(ii): 5 [S=5, P=6,V= = 3],
48 — (iii)(v) : 4x2=38 5:6,P—6,V—4,V:2],
48 —(iv): 4 [S=5, P=6, V=2 V' =3
2V —(vi): 2 [S=5,P=6 V=1,V =3, (9.25)
48 — (vii) 03:(;1 :T;!:6 [S=6, P=6, V=4, V' =2
2V — (viii) —4S: 2x4=8 [S=5 P=6, V=2 V' =3

zi): Ca=1 [S=4, P=6,V =0, V' =4],
total: 1 x (5+5+84+4+2+6+8+1)=30.

Therefore, the number of (’)(68) diagrams that can be gotten by correction on diagram V11
1s 39.

Lastly, we can apply the operation on type VIII (1X) diagram. The diagrams generated
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by adding operation onto them are listed in Eq. (9.26)):

VIII [S =5, P=5, V =4, V' =1] followed by (1 x --+):
5P — (i) : [S=7 P=6,V= 6V—],
5P—(ii): 5 [S=6, P=6,V =4, V' =2,
55 — (iii)(v): 5x2=10 [S=7, P=6, V=6, V' =1],
5S—(iv): 5 [S=6, P=6, V=4, V' =2,
4 4 =6, P= = "=2
V — (vi) : [S 56, 5|6, V=31V ], (9.26)
_ 2 — — — g
55 — (vii) : <2> = 300 10 [S=7, P=6,V =6,V =1],

AV — (viid) =58 4x5=20 [S=6, P=6, V=4, V' =2,
4V — (

2 212!
total: 1 X (5+5+10+5+4+ 10+ 20+ 6) = 65.

41
i) —(4):—:6 [S=5 P=6, V=2 V =3,

Therefore, the number of (’)(68) diagrams that can be gotten by correction on diagram
VIII (IX) is 65.

At O(€%) in total, we have 3818 x 24 1506 x 24483 4 101 4 39 + 65 x 2 = 11401 diagrams.
By the way, the diagram shown in the Eq. (9.68) of the book can be gotten by operation
(vii) onto the diagram V1.

(b) Gauge invariance means the diagram should be independent of the gauge choice £ variable
in the photon propagator. There are two internal photon propagators in the graph. One
can effectively treat this diagram as the t-channel diagrams as Eq. (9.41) of the book.
Thus, the diagram is gauge invariant when also include the diagram with the photon lines
like a u-channel diagrams and the 4-point vertex like the Eq. (9.43) of the book. The only
subtle point however is now one can no longer treat the scalar as on-shell because they are
internal lines. To show the gauge-dependent part of the diagrams still cancel out, we can
write out the integral like the Eq. (9.44) of the book but don’t impose the on-shellness of
the scalar particle.

d*p, d'p, d*q d'k 1 1
. 2 ( 77)454(]91 +p2_k_Q) 2 2

Mt+M“+M4:€/< o (2m)! (27)" (27)’ .

[<q — 20 = 295) | (@7 = ) (KT = 200) g ] ()T (k) X ).

(g—p)° —m? (@—p2)" —m
(9.27)

Now, if we replace II,,(q) — £q,q,, throwing the parts vanish due to the momentum
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conservation, we're left with

dp, d'p, d*q d'k 1 1
2 L (2m) 6 (py +py — k — q)— 5

(2m)" (2m)* (2m)" (27) PP —m?pi—m
(=pi +m®)(K” = 2p3) | (=p2 +m*) (K" — 2p))
: { G-p)—m | a-p) - } uplk) Xapla, £)
—¢? / d'py d'py d'q d'k
(27T)4 (27?)4 (27r)4 (27?)4
(—k" + 2p3) (—k" 4 2pY)
’ {«q o =@ —mh) (g ) — ) - m2>} Mo (k) Xos(a, )
=e’ / d'py d'py d'q d'k
(2m)* (2m)* (2m)" (2m)*
(=K +2p; — 2¢") (=K + 2p7)
{@% (- — 1) | (@ —pef — D) mQJ s (k) Xapla, )
— 2 d'p, d'p, d'q d'k )i o (—2K" +2p5 — 2¢" + 2p;)
¢ [l =0 [ | e este

Mt+Mu + M4 — 62/

(2%)454(]91 +py—k—q)

2m)* 6 (py +po — k —q)

—0
(9.28)

where to get the third to last line, we simultaneously linear shift the dummy momentum

p; — p1 +q and p, — py — ¢ in the first integral. The next to last line clearly vanishes
because of the momentum conservation.
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Spinors

10.1

(a) Starting from the Dirac equation with covariant derivative,
i"*(0, +ieA, )Y = my
i) = in"y' 0b = "7 Ay + mA " + eAgy (10.1)
= (7"7'(i0; — A;) + )’ + Ay,
where we multiply v, from left on the second line. We can then identify Hp = 4°y"(—p; —
A;) +mA’ + eA,.
(b) Doing the minimal substitution p; — p; + eA; in Hp, we have
(Hp —eAg)* = (4"7'(ps + eAi) —mn")?
=m* —m(y""Y +19°9"") " (0 + e A (p; + e4;)
=m? —0— 'y (p; + eA))(p; + e4;)

=m’ — %({vimj} + [V ] (s + A (p; + eAy) (10.2)

1 g g
= m® = (=207 = 2i0")(p: + eA))(p; + eAy)
= (m* + (F+ eAP) +eB - 7,

where we used the results of eq.(10.103) - eq.(10.109) from the book in the last line. Put
back the factor of ¢ and h, we arrive at

(Hp — eAy)? = (m*c* + (pe+ eA) )+ ehB - & (10.3)

(¢) Taking the square root and subtracting off mc*, we have

1

- /TQ h . 2

(pc+2€4)1[+ ch 5. 2
m c m c

I+

(m*c* + (e + eA)*) + ehB - 5] * —md® =mc

—,

ic + eA)? i
eredy chogal
2mc 2me

!

(10.4)
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1 1 . .
[Sia Sj:| = Z [Uia O'j:| = Z_l : 2Z€ijk0k = Zeiijk (105)
[Liv L]} = [Eikzlxkpl? 6jrnn‘fl”n’bpn} - 6iklejmn(a‘jkpl'rmpn - xmpnxk‘pl)

= _ieiklejmn('xkélmpn - xmdnkpl)
= —i(5kj5m - 5kn5ij)ﬂ7kpn + i(5im51j - 5ij51m)95mpl (10.6)
= —ix;p; + 12 - pd;; + 1x;p; — 10, - p
= i(%’pj - xjpi)
On the other hand,

iﬁijkLk = iﬁijkalmlem = i(5il5jm - 5¢m5jl)$lpm = i(xipj - xjpi) (10-7)

Thus, [LZ-,L]-} = 1€;;,Lg. The angular momentum operator L; and the spin operator S,
both satisfy the rotation algebra.

(e) Let
. 0
B=10], (10.8)
By
such that
| -y
2 0

The term that is linear in A in Eq.(10.4)) is

1 R - e
e 1
= 5 5Bo(p.(—y) + pyr + (=y)p, + 2P
2m 2 Do (=y) + pye + (=y) ) (10.10)
e
= 5, Bolep, —yp.)
= iBOLZ
2m
The spin term in Eq.(10.4)) is
e =g N e 3
—B.-d=—8~B 10.11
2m 7 2m 07 (10.11)
Thus from the entire coupling term,
© By(L. +0®) = —By(L. + 25.) (10.12)
om 0\z g )= om 0\Hz z)s .

we can read off g, = 2.
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10.2

(a)

First notice

[ﬁaﬂ'ﬂ =13, 1| £i[r3, 7] =imy £y = +7*. (10.13)

Thus,

TV = (£ + T )V = r (L4 )V = (N £ )TV (10.14)
However, since 73 is an n X n matrix, it can at most have n eigenstates. But the ladder
operators 7% when applying to an eigenstate of 73 monotonically increasing(decreasing)
the eigenvalue by one unit, there must be at least an eigenstate V,,,,(V,.;n) that has the

largest (smallest) eigenvalue, which when was acted by 7% should vanish to keep Eq. (10.14)
consistent.

The uniqueness of V.. comes from the argument in (a) as well as the fact that the rep-
resentation is irreducible. Irreducibility guarantees that each eigenstate must have distinct
eigenvalue.

Notice

[T+,7'_] = —i[r, | + i[my, 71| = 273, (10.15)

and

{rFr =T+ = 21¢ + 273 (10.16)

Also, the Casimir operator is defined to be 77, where Einstein summation is assumed. We
will prove that the Casimir operator commutes with all the generators.

[7’2 7'} =T [7’~ 7'1 + [7‘ T']Ti = iei{Ti, i} =0, (10.17)

i1y 'y 'y

which vanishes because ¢, is antisymmetric, but the anticommutator is symmetric. We
can express the Casimir operator as 77 = %{T+, 7'_} + 7'32 , and this commutes with all the
generators as well as 7=, Acting the Casimir operator on V,,;,, we shall get

1 .
Tz'2 min — (§{T+>T } + T??)me

1
=(=(tTr +71H) + 7'32)me

2
L
=37 T+ 75 Vin (10.18)
1
= _5[ +a7—_] +7—§Vm'm

= (_7_3 + T;)szn
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But we could also have

=(r~ §{T+,7'7} + T )Wonas
1
= (T‘)N(§(T+7_ +77) + 75 ) Vina
1
= G AT Vinas (10.19)
_v, 1 _
= (T )N(§[ +77— } +T32)Vmaac
= j1+ ) ) Voaa
Equating Eq. (10.18]) and Eq. (10.19),
P24+ N?—2Nj—j+N=j5>+j
N?—(2j—1)N—-2j=0
25 — 1) £1/(2j — 1) + 85
N:(] ) ;] )" +8) (10.20)
1 1
N=(G-2)+ -
=50 +5)
N = 2j,

since N must be a non-negative integer, only the plus sign can be chosen. This also tells
us j must either be a positive half integer or positive integer.

For n =5, j =2, and N = 4. We thus know that in the basis that diagonalizes 75, the 5

distinct eigenvalues of 73 are 2,1,0, —1,

T3 =

S OO O NN

0
1
0
0

S OO OO

0

0
0
0
-1
0

—2. Thus we can write out 73 in this basis as

0
0
0. (10.21)
0
—2

Its ith eigenvector has 1 on the ith entry with all other entries 0. We will explicitly construct
the ladder operator’s representation now. Since 77 (77) raises(lowers) the 1 on ith entry
to i+1th(i-1th) entry, while leaving all other entries 0, it’s clear that the 77 (77) will only
have non-zero entries right above(below) its diagonal. Therefore, we can write

o O O O O
OO OO

95

0

oo o

0

o oo O

(10.22)
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Also, by Schur’s lemma, a group element that commutes with all other group elements
in any irreducible representation must be proportional to I. Since the Casimir operator
commutes with all the generators, it must be proportional to I. From Eg. , 2=
2(1 4 2)I = 6I. Then,

1
T = 5({T+,T_} + [ 7)) = TP — T Ty
4 0 00 0
06 000 (10.23)
=100 6 00
00040
00000
Combining this with Eq. (10.22), and 7~ = (7). We simply have
la|* = 4, [b]> = 6, |c|> = 6, |d|* = 4. (10.24)
We have freedom to choose these to be real and arrive at
02 0 0 O 0 0 0 00
00 +v6 0 0 2 0 0 00
=100 0 V6 0|, 7 =|0 V6 0 0 (10.25)
00 0 0 2 0 0 v6 00
00 0 0 0 0O 0 0 20
Then,
0 1 0 0 0
1 0 % 0 0
1 _
n=s( ) =lo 5 0 5o (10.26)
0 0 % 0 1
0 0 0 10
and
0 — 0 0
| P00 —i/io0 o
TQ—%(T_—7'+): 0 4/3 0 —i\/g 0 1. (10.27)
0 0 i3 0 —i
0 O 0 i 0
10.3
(a) First, the RHS is just
2604/36@5 = 250“54555 - 26a,6’5,3d' (10.28)
We also need the identity
Tr[o,0,] = 26,,. (10.29)
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To prove this, we know that since Pauli matrices are all traceless, if either y =0 or v = 0,
the only non-vanishing case is if both © = v = 0 and thus, Tr[I] = 2. Now, for x # 0 and
v # 0,
1
Tr[oi0;] = = Tr[{az,aj} + [0i,0;]] = 6;; Tx[I] = 26, (10.30)

The commutator inside the trace vanishes again because Pauli matrices are traceless. An-
other way to see is because of the cyclic property of trace, the only non-vanishing part is

the symmetric term. Thus, Eq. (10.29) is proved.

Next, notice the Pauli matrices and the identity matrix o° form an orthogonal basis for
the Hilbert space of 2 x 2 complex matrices. Thus, any 2 x 2 complex matrix M can be
expressed as

M = Zaua”, (10.31)

for some complex constants a,. Notice this is a simple sum with no sign difference between
the 0-th component and other components. The a, can be extracted as

w
= Z a, Trlo"0"] = 2 Z a, 0" = 2a”, (10.32)
o
where Eq. (10.29) is used, and then
1
ay = 5 Tt[Mo,]. (10.33)
So

2M = Tr[Mo")o" (10.34)

o
or written out with spinor indices,

:Za“.M

0= My, Zam ol = 205304,.)- (10:35)
Since M is an arbitrary matrix, we must have
Z 0ha0hs = 205404 (10.36)
The LHS can then be expressed as
GO g, Bﬁ = ZUMUM Zaaa Opy = 2004055 — 20,3084 (10.37)

where we used the fact that ¢ is just the identity matrix and also the delta is symmetric
upon indices exchange. This is exactly the Eq. (10.28). Thus, we have proven

gyuagdagﬂ' = QEQBEO}B- (1038)
¢ e-'a“’BB 19 0 Lo auﬂﬁzlg 050 0#55:19 o0 Trjo"0"] = g0 § s _ Gh
aftap 92 oy 88 2 oy 88 9 oY aa 570 o Qo

(10.39)

where we used the result of part (a) and Eq. ( m
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10.4

(a) The Lorentz generator is defined by S* = £[7*,~"] from the Eq. (10.68) of the book. With
the gamma matrices in the Majorana representation given by the Eq. (10.74) of the book,
we can get

3 qi2_fr1 oy 0 0 —i[US,GQ] _ (0 '
=95 _4[7’7]_4(1'[03,02] 0 “2\et 0 )

1 23 lr o 37 _ 0 0 Z[Uz,al} (0 ol
T=9 _Zh”]_z;(z’[a?,al] 0 ) 2\ 0)°
. . ) , e (10.40)
K1:S()1:£[0 1] 3 0 ZU,U} :1 0 o
A7 4 i[az,a?’} 0 2\-c! 0 )’
2 02 tro 27 0 {02,02} 0 _ (I 0
K =S —4[7 77]_4( 0 . 0_2’0_2} _2 0 —I)/°
3 03__ tro 37 _ ¢ 0 —ilo*d'|\ i (0 -o°
K"=5 _Zhﬁ]_é_l<—i[02,al] 0 T 2\=¢> 0

(b) e Majorana Representation

From above, we have

1 ((6®) + (6*)? + (o')” 0 3
72 1,2 212 312
et = — — _H
P =3 (0T Pt s (o) = O
- o o (10.41)
where we used the fact that 0’0’ = 1{o", 0’} +1[0",07] = 67 +¢€;;,0" and s0 (¢") = 1
(no Einstein summation here).
e Left-handed Weyl Representation
From the Eq. (10.73) of the book, we have
1+1+1
1 I+1+1 3
72 ql\2 2,2 332 _ 1 _ 9
P = (P (PP (P = N =
1+1+1
(10.42)
e 4-vector Representation From the Eq. (10.14) of the book, we have
0
72 712 22 32 _ 2
J =)+ )+ () = 5 (10.43)

2

For spin—s particle, the eigenvalue of J? is just s(s+ 1). Therefore, the Majorana and the
left-handed Weyl Representation describe a spin-half particle while the 4-vector represen-
tation corresponds to a spin-1 and a spin-0 degree of freedom.
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Chapter 11

Spinor solutions and CPT

11.1
(2)
(75) (270717273) _7071727370717273
_ 0,01 2 3 _ 59319 3
777777’77 WV’YW’Y’Y 111
1,1,.2.8.2 3 _ 2.3 2 3 (11.1)
—’Y’Y’Y’Y’Y”Y e e e el
:—”Y’Y =1
(b)

YY" =1 P = 100 (267 = 1Y)
=2p— 2gpu7p7up

=2 — (gua + Gap)Y* P (g is symmetric)

=2 — %(gua’yo‘”y“ + 9.7"7")p  (Renaming the indices on the 2nd term in the parentheses)
=2p - gua{v 1

=2p — —gw(2g “p

=2p— 4
= —2p
(11.2)
(c) We will first prove an identity that ,v"y*y" = 4¢".
1Y YA =707 (29™ —4"%)

= 294" + 2+"~4*  (where we used the result from part b) (11.3)
= 2{,}/@’ F)/V} .
— 4ga1/
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VupdpY" = Pudaps (1,7 7Y )
= D, 0aPp(1, Y 7 (267 — A97))

— pyqapﬁ(Qv’gy”ya 49" B) where we used eq.(|11.3)) (11.4)
(27
(—

= D, 0app(27° (29" — 4*9") — 4g"*")
:pVQOzpB

277"
= —2pdp

(%"} = i )

= i(7" %" + 70y %)

(11.5)

Each time the " anticommutes with a gamma matrix of different index, it introduces a
(—1), and 7" commutes with itself. As p=0,1,2,3, if we want to move the 4" in the first
term to the leftmost. It always introduces a (—1)*. We thus arrived

{7",7"} = i1 ) = 0 (11.6)
(e) We will first prove an identity that Tr[y"~"] = 4¢"”

1
Tr[y"~"] = §(Tr[”y“’yy] + Tr[y"+"]) (trace is cyclic)

1 v v
=5 Tty + 77"

1 , 11.7
= S Tl{7", 7)) L)
1
= 5 Tr[29"]
= 49‘“”
Te [1°9#9%7" ] = Tr [7°7(26™ = 79|
= 2¢" Tr[y*4"] = Tr [va(Qg“” — ) }
= 2¢” Tr[y"y"] — 29" Tr [7‘“75 ] + 2% Tr [’Y“’Yﬂ } —Tr [’y”’y“v"’yﬁ } 118)

_ 2gﬂy Tr [fyaryu] . 2gﬂl/ Tr |:,yoc,y,3:| + anu Tr |:,yu,y/3i| — Tr |:,ya,yu,y/3,yui|
B SWBAAY fyi
. 49,81/ op 4g,ul/ ap + 490‘1’ e (eq " 18 USed)
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(11.9)

implied. Similarly,

5—!‘

summation rule is

m. Einstein

where we used the fact that v*

(p-o)(p-o)

(11.10)

(11.11)

of Pauli matrices tr((a
102

b b b b

ed the completeness relation

we us

a in the last line.

where
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11.3

The key is to prove the interaction between the massless spin-1 particle and the spin-0 or
spin-1/2 particle in the soft limit has the form 1%;' Then, the derivation just follows what’s in
Section 9.5. Section 9.5 has already proves the general interaction form for spin-0, so we will
just focus on the spin-1/2 case. By the Lorentz invariance, the only new interaction from the
spin-1/2 case that has not yet already covered by the spin-0 case is the one that involves +".
Suppose the interaction has the form " F(p, ¢), where F is the form factor that in general can
depend on contractions of momenta or on contractions with ~-matrices.

Starting from Eq. (9.46) of the book, for an external leg of spin-1/2 particle of mass m,
when tacked by a soft photon, the amplitude is modified to be
MV“U(M
P—q) —m
e'p" YY" — df + m¢u( )

% -q Di

€'’ (29" —1"") — d¢ + my u(p) (11.12)

M;(pi, q) = (—ieF;)e" My(p; — q)

= —eF;,M,(p; — q)

= —eFMy(p; — q)

2
|
D
o
e
<
S
g
[
=
S

which has the intended interaction form. The derivation then follows exactly as that in Section
9.5. In the second line, we used the on shell conditions for the external spinor and the spin-1
particle. In the third line, we used the anticommutator of the gamma matrices. In the last
line, we took the soft limit. Also the last term vanishes due to the equation of motion of the
external spinor. The second term can be ignored in the sense that once one took the amplitude
square, this term becomes Tr [g;é] = 4q - ¢ = 0 by the fact that the polarizations of a physical
photon are transverse to their own momenta.

11.4

First notice that

—ﬂ(q) [’Yua /71/] (QV B pu)u(p>

zu(q) 2m - 4dm
— —’EL(C]) (fy Y _74?/”)(QV _pu>u<p)
(@ =12 — (" = gd")p (11.13)
= —u(q) "2m “u(p)
- 7Tt(q)w it fn:q —F u(p),

where we used the anticommutation of gamma matrices on the third line.
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We then can have

¢ +p" +m“+7"p—q”—p" .
2m

u(q)

2m

(11.14)

where we used the equation of motions for the spinor since they are on-shell, namely pu(p) =

mu(p) and u(q)¢ = u(g)m.

11.5

For a general Dirac matrix combination transformation I', we have a general spinor bilinear

charge conjugation transformation as

C T = (=ima) ol (=im29") = =" 1l 2t
—%(%%F%)amﬁ}%
= Va(127%172) ga¥s
=" (7270F’72)T¢

(where o, 8 are spinor indices)

(anticommuting the spinors and relabeling ov — |

= 7 10% (2% l2) Y (v =)
= ¢70’72PT’70721/) (75:2 = 70,2)-

e For Eq. (11.54), ' ="

1072(7°) 072 = (1) 127 = (=1)°(12)*° = (=1)*y

Thus, C : i)y°Y — iWpy .
e For Eq. (11.55), ' = ~°y*:

Y27 Y) 072 = %027 Y 07

For = 0,2,

For p=1,3,

72" 0% = =077 Y 102 = (=1 11027 = (1) 7y

Thus, C : iy’ — ihy°~y*1h.
e For Eq. (11.56), I = o/

Y072 (™) YoY2 = =02 [WMT;V ]7072.
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4.5 5

= (11.16)

(11.17)

T .5 5

vT

(11.20)
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Notice for u = v, 0" = 0, and result holds trivially.
Fory=0and v=2or p=2and v =0,
Y072 [V“T
(11.21)
For py=0,2and v=1,30or p=1,3 and v =0, 2,
MTVVT'Y :(_1)2 wo v :_15 o 1/:_17,u v
: 072 7072077 107 = (=1)" %0770 7T = (=11, 7"
(11.22)

—Y072 [7

Thus, C : Yo" — =™ 1.

11.6

()

First notice that as a prOJectlon operator PL/R = P/p, PL/RPR/L =0, and P, + Pr = 1.
5
Also, PL/R = Pp/p since 7 , and Y*Pp g = M- Fr = &27 Y = Pg/y", where we

have used {75,7”} =0. Then,

Uy = Yy (P + Pr)y
= 7" (P + PR)y
= 1y Pry" Prip + 0y Py Prab
= Y Py Prp + U Proyoy Pry
= (PL) "o PLi + (Prib) ' yoy" Pry)
= YY" + Uy g,
This tells us that the QED vertex conserves chirality.

(11.23)

From Eq. (11.25) of the book,

R o B I

where we used the fact that in the rest limit, \/p-0 = /p- 7 = /ml.
With the Dirac matrices under Weyl representation from Eq. (10.64) of the book,

0.i__ [0
7= < ai) 7 (11.25)

it’s easy to calculate the spinor current explicitly. For the time component,

Dy =iy, (11.26)

which clearly vanishes unless both spinors are spin up or down. This holds even if the
spinor is not rest due to the normalization of the spinor. For the spatial components,

i, (p)y'ug (p) = m <§> ( " gi) (E) (11.27)
0

= m(~¢logy + Eloigy) =
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Similar calculation can show o, (p)y'v, (p) = 0 as well. The spatial component vanishes iden-
tically is clearly an expected result for non-relativistic limit. Notice currents like ﬂsyivsf or
@svius/ are possible, but are relativistic effects, as these terms represent particle antiparticle
annihilation and pair production.

This is just to look at the Schrodinger-Pauli equation. From the Eq. (10.4) of the book,
it’s clear that only B field couples with the Pauli matrices that can change the spin.

Since the spin is not changed while the spin has been flipped. The helicity has been flipped.
On the other hand, chirality is not changed. This is consistent with (a), which only states
the QED vertex conserves chirality, not helicity.

One can use Stern-Gerlach experiment to measure the spin of a slow electron. In principle,
one can simply send the electron through an inhomogeneous magnetic field and observing
the deflection. However, since electron is charged particle, there is Lorentz force that will
bend the trajectory in a circle. One can use electric field to balance this effect. Since just
shown in (d) that the electric field can’t alter the spin, this electric field will not affect the
result.

This is actually the famous Wu experiment, which establishes that parity is not conserved
in weak interaction. One can measure the spin and momentum of the electron with respect
to the colbalt-60 to find out the polarization. Notice since nickel-60 has almost the same
rest mass as the colbalt-60. One can safely assume the nickel-60 is almost at rest and
most of the momentum are carried out by the electron and the anti-neutrino, and thus
the momentum of the electron and that of the anti-neutrino must be balanced off between
themselves. As there is also not much energy available to the electron, it’s safe to assume
its speed is non-relativistic, and we can expect the spin is almost conserved in this case. If
such decay is carried by a spin-1 gauge boson, due to the spin conservation of part (b)’s
result, the electron and the anti-neutrino should either be both spin up or both spin down
with respect to the colbalt-60’s spin. On the other hand, momentum conservation says
the two must have opposite momentum. These imply that the helicities of the two must
be different. Also, as the neutrinos are almost massless, their chirality eigenstates almost
correspond to their helicity eigenstates.

If the gauge boson responsible for the weak decay has an interaction vertex that conserves
the chirality like the one in part (a), one would expect the electron emitted should be
unpolarized with respect to the colbalt-60. In reality however, as the RH neutrino or LH
anti-neutrino doesn’t participate in any Standard Model interactions (and they are never
observed at this point), the only anti-neutrinos can be emitted in this decay are all RH
(both helicity and chirality sense, as neutrinos are almost massless), and the electrons have
to be all in LH helicities to conserve spin. This establishes the fact that the weak interaction
doesn’t conserve parity. It’s also interesting to know the parity is maximally broken in the
weak interaction or in other words, it has a V-A interaction structure, so it doesn’t interact
with RH chirality particle and LH chirality anti-particle at all.
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11.7

Throughout the following derivation, we maintain in the Weyl basis. From the Eq. (11.90) of

the book, we can see

C-P-T:¢'(z) =

Under C - P - T, we have

o Y.

Y(a)p(e) = (—v' (=

e ip@): Notice that d, — —0, and id,, — (—

(=97 (—2))" =

=~ (1570 75%) ¥

= Y(Vs75%0%) ¥
= p(—x)Y(—x).

is invariant under CPT transformation

ip(z)P(z) —

(—1)ki(—¢T(

WD (YsY¥5 Y0V Y0) -
(70%70) 9,0

—Q/JT<_$)’Y5'

2)75) 0= (=

(11.28)

(11.29)

i)(—0,) = i0,. Thus, the operator i0, itself

T)V5) Y0V M( Y5¢" (—))

(11.30)

where k = 0 for  # 2 and k = 1 for u = 2 since in the Weyl basis, 7, is imaginary. On
the third line, we integrate by part and get an extra factor of —1.

e At This can be easily deduced from the above. Since A,(z) = —A,(—z

), but there

is no extra factor of —1 from the integration by part, and the rest parts just transform
similarly as the above, we can deduce that ¢ A is invariant under CPT transformation.

o Py YW,

(@ (@)W, () =

(=D (¢ (—2)y
YA y5v0) YW,

(=
(=
(=
(=

1)
1)
1)
1)

5 NT) qu

¥

P (v°7 " 0) YW,
by

Py,

= (=)' Y (—2)W,(—z),

where again k =0 for p # 2 and k =1 for p = 2.

107

Oy (s (—

2)) (=W, (=x))

(11.31)



Chapter 11. Spinor solutions and CPT

e Yo"y F,,: Notice that F},, = 9,4, —9,A, — (=9,)(—A,) — (=0,)(—A,) = F,,. Thus

the field tensor F),, itself is invariant under CPT transformation.

Y(@)o" (@) F (@) = (=1 (=" (=2)7" )7 0™ (=50 (—2)) Eyu (—2)

= (=1 (11 0" y5v0) W F,

= (=1)**2P(y° 1570 v0) W F,

= (- 1)'““1/7(700“”%) VF,, (11.32)
= (1) (o Ny

— (UM,

= Y(—x)o" ?/J(—x)Fuu(—l’)a

where now k = 0 for either = 2 or v = 2 (¢ is real in the Weyl basis) and k = 1 for
pu# v #2 (6" is imaginary in the Weyl basis).

° i@Z’y‘r’zp:

i (x)y°P(x) = (=) (¢ (—2)7" )"y (=07 (—x))
(V77 570) ¥

= 15(7570%)
(=) ().

(11.33)

Now, it’s easy to see that terms like (F),,)" is invariant because F),, itself is invariant;
(0,A,)" = ((=0,)(=AL)" = (0,A,)" is invariant; (A,)"(B,)" — (—1)2"(Au)"BZ — AL(B,)"
is invariant (A, can be the same as the B, but the vector indices must contract properly
to maintain the Lorentz invariance). The above derivations also illustrate that each vector
index got a factor of —1 under CPT transformation then as long as these indices are properly
contracted to maintain the Lorentz invariance, they must cancel out in pair and thus invariant
under CPT transformation. Every derivative operator d,, sandwiched between a spinor bilinear
should be paired with a factor of ¢ to cancel out the factor of —1 from integration by part.

It should be noted that any spinor bilinears can be decomposed into sum of any of the
above terms. The reason is that in 4d spacetime, the Dirac spinors have 4 components, and
thus the spinor bilinear can have at most 16 degrees of freedom. In the above derivations, the
scalar bilinear 11 takes 1 dof; the vector bilinear 17"t takes 4 dof; the anti-symmetric tensor
bilinear ©¥o"”1) takes 6 dof (since any general 4 x 4 anti-symmetric matrix can have at most 6
dof); the axial-vector bilinear QZ’y“’ysw takes 4 dof; the pseudo scalar bilinear M’yf’w takes 1 dof
(We shall justify in the Problem that they are mutually orthogonal and thus, must take
independent degree of freedom). In total, these spinor bilinears take 1+4+6+4+1 = 16 dof.
Therefore, the degree of freedom is exhausted and any bilinears that sandwiched more than
five gamma matrices have at least two repeated gamma matrices and thus can be reduced and
simplified into sums of any of the above terms.

Therefore, any Lorentz invariant terms one can write down in terms of Dirac spinors, -
matrices, vector fields, and tensor fields are automatically invariant under CPT.
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11.8

(a) First notice that by applying Eq. (10.142) onto Eq. (10.141) of the book, it’s also true
that g,,06, 6,088, = 2€a,8,Eaq8,- Lhen, in the Weyl representation,

- ©
wWMPL% - (ML wiR) <(1) (1)) <5Ou %) (é 8) (Zi;) = ML&N%L- (11-34)
Thus,

(QZWHPL%)W_’?,%PL%) = <¢IL6M¢2L>(¢§L5—;L¢4L)
= W’Iml (6#)a1a2¢2La2)(¢;L51 (0,.)p,8,%a15,)
= 264,5,Eas8, (¢1Lal¢2La2)(¢;Lﬁl¢4L,82)
= _2€a1ﬁ1€a252(¢J1rLa1¢4L52)(w?tLﬁl¢2La2> (11.35)
= 2€4,8,E8y0, (wILalw4Lﬂ2)(w§Lﬁl¢2La2)
= (@ZJILal (5#)041,82,’7Z)4L62)(¢;L,81 (04) 8,0, V2Lasy)
= (7/;1’YMPL¢4)@3%PL¢2)-
The minus sign on the fourth line is due to the anti-commutativity of the spinors. In the
fifth line, the minus sign is canceled because €,,3, = —€3,,,- 1 believe the Schwartz has
a typo that there should be no minus sign in front of the last equality because

the spinors should anti-commute. Also see Peskin & Schroeder’s corrections comment
on their p.51 E|

(b) Since
— 0 1\/0 o\ [0 o*\/0 ¢\ [1 0
Y1y VBPL% = (?/)IL wIR) (1 0) (g# %) (go‘ U()) (55 U()) (0 O) (i;i)
= 17" 0T Wy,
(11.36)
Thus,

(&1’7#7a’7ﬂPL¢2)(QZS/VuVaVﬁPL@ZM) = (¢IL5—#UQ5§¢2L)<¢;L5uao¢5—ﬁ¢4L>
= (] 10,010 0305 T gy V2, ) W1, (51) 3,5, (00) 5,5, (05) 8,8, s,)
= 85a1ﬁ15&262%2525&3,33%3&35044/34(@Z’IL%%L%)W;,LBI@/JM@)
= 32€4,8,€a,8, (ﬂml VaLa,) W’%Lﬁl Yars,)
= —32e4,4,€0,8, (wILa1w4Lﬁ4)(ngﬁl VYara,)
= 32205, 80, (Vi 10, Va25,) (Wips, VoLa,)
= 16(¢IL6_H¢4L)(¢§L5—M¢2L)

= 16(1;1WMPL¢4)(1Z3VHPL¢2)'
(11.37)

Lhttps: / /www.slac. stanford. edu/ mpeskin/QFT.html
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In the fourth line, we use the contraction relation of the Levi-Civita tensor: 5a55a5 = 2.
Again, the minus sign on the fifth line is due to the anti-commutativity of the spinors. In
the sixth line, the minus sign is canceled because €,,3, = —€g,4,- I believe the Schwartz
has a typo that there should be no minus sign in front of the last equality
because the spinors should anti-commute.

There are again some typos in this question. It’s should be 'I‘I‘[(I‘M)TI‘N} =

46™%Y instead of just ’I‘I‘[FMFN] = 46™". Otherwise, for example, Tr[y"7"] = 4¢",
which is 4 if 4 = v = 0 but —4 if 4 = v = ¢ and thus, cannot be properly normalized.
We shall also use the set T € {I,v*, 0" v57",i75} as the basis. The i in front of the
pseudo-scalar basis is necessary for proper normalization as we will see (and also, when
sandwiched between fermion bilinear, is required to keep CPT invariance as we showed in

Problem [11.7)).

We shall denote the scalar basis as S, the vector basis as V, the tensor basis as T, the

axial-vector basis as A, and the pseudo-scalar basis as P.

Before moving on, we shall prove that 4’4" = (T, For S, 1’1’ = (%)% =1 = I'.
For V and T, these are already proven in the Eq. (10.84) and Eq. (10.85) in the book.
For A, 1"57"7" = —157""" = =35/ = ()" = =(4"3)" = (37")". For P,
Yinsr” = —i(y") s = —ins = (i7)"

e SS:
Tr [m} — 4. (11.38)

e SV:
Tr []IW] — Tr[y"] = 0, (11.39)

by Eq. (A.39) of the book.

o ST:
Tr []ITJW} = Tr[y"~"] — Tr[y"+"] = 0. (11.40)

e SA:
T [y | = Trbysn] = = Trlyys) = — Tefrsy*] = 0. (11.41)

e SP:
Tr []IT%,] = Tr[ys] = 0, (11.42)

by Eq. (A.39) of the book.
e VV:
Tr [(V“)Tﬂ = Tr[y"7"7"y"]
= Tr[(26™ — 7"1°)7"y"]
= Tr[29"y" = v"9"]
= 29" Tr[7"7"] = Te[y"y"] = 8¢™'¢" — 49"

)4, itp=vw
o, ifp#tr
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e VT:

Tr [('y“)Taaﬂ =Tr [WOVH’YOUQB] 0, (11.44)

by Eq. (A.39) of the book since this has odd number of gamma matrices inside the
trace.

e VA:

Tr[(v“)*mw”] = — Tr[y"7"7 957" 7"

= —Tr [7“707“70757”7“}
= Tr[7°7"7 57" 77" (11.45)
=—Tr [(7") 757”}

— Tr[(v“)%ﬂ =0,

where we have chosen « such that v # 0, o # p, and o # v. Since there are at
most 3 different gamma matrices in the trace, it’s always possible to choose a fourth
gamma matrix v* that anti-commute with all others. Also notice that since o # 0,

(v%)* = -1

Tr [(7“)*@'75] = i Tr[7"7"7"7s]
= —iTr[57"7"7"]
= —iTr[y°7"7"s] (11.46)
= Tr[ ") 275}

(v
== Tr[ 175} =
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e TT: By convention, for the tensor ¢ we can ask the indices pu < v.

Tr [(U‘”’)Tgaﬁ} =Tr [700“"7000‘5]

1 1% 12 (07 (03
=——Tr [70(7“7 — VY (79’ — 4Py )}

1
= —Tr [VOV“V”VOV“WB }
— —Tr 720" = 1°9")7*” ]

= —2¢" Tr [707”7“76 } +Tr [v”v“vavﬂ ]

= 89" (—g"g"" + ¢" ") + A(=g" " + 9" 9")

(466" 49”9 =0 (1147
— _4gzagl/,8 + 4gzﬁgya o= i 7§ 0
L0 W«

r490aguﬁ o= 0
=4 499" p=i#0

(0 fF o
(44" " =0 (no sum on 1)

=14 —4¢"¢”7 pu=i#0,v=7%#0 (nosum on ¢ and j)
0 I F#

= 4515”7,

where we used the fact that it’s always true that v # 0 and 8 # 0 and also, since
i< vand a < (3, it’s impossible to have = § and v = «.

e TA:
Tr [(0“”)T757a] =Tr [%(a‘”)*ﬂ
=Tr [(UW)T’YQ%}
(11.48)
1o
= Tr[(ﬂ“”)Wﬂ“] =0.
o TP:
TT[(UW)TZ%} = —% Tr [ (v"7" = """ y5) = 0 (11.49)

as already proven as a middle step in the case VA.
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o AA:
Tr|(457") 57" | = Te[3"957%9%157")
= Tr[y"7"7"y"]
=Tr [70(29”0 - VO’YM)VV] (11.50)
= 29“0 Tr[ 07”} — 49"
_ 8gu0 Ov 49#1/
= 46",
o AP:

Tr|(559%) 1% = i Te[1%357%9%95] = Tr[1°9#9°] = 0, (11.51)
by Eq. (A.39) of the book since this has odd number of gamma matrices inside the
trace.

o PP:
T [ (i75) 45| = Telss] = Toll] = 4. (11.52)

We have thus proven that Tr [(FM)TFN] = 45MN

(d) We can write out the spinor indices of the bilinear product

(91T aby) (s TN ehy) = (101) Ty (1) (W5) Lo (¥04) - (11.53)

Thus, the spinor fields really just serve to bookkeeping the indices. As already argued in
Problem that the above set of 16 tensor structures can be used as a basis of 4 x 4
complex matrices. This means it’s always possible to express

(1)l a (2)5(V5)e L aa (4)a Z 0 (V1)alea(¥a) a(Ps) T (1), (11.54)

for some coeflicients C’%QN to be determined. It’s important to notice that there is
a minus sign again coming from anti-commuting the spinor fields since their
components are Grassmann number. Schwartz again missed the minus sign.
Since the spinor fields really just serve to bookkeeping the indices, this equation actually
stands as

e = — ZC A

LT (T 4, (0P, Z CPQ Laal G (T ) aa (T
Te[ DAY = - Z O Tx [PATP ] T [P (11.55)
PQ

Tr [FATFMFBTFN} — _16 Z CMN 547559

CMN = —% Tr [PPTFMFQTFN}
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where in the second line, we multiply both sides by (I'*") 4. (T'Z1),.
Therefore, (4T (5T ) = = 3y & Tr [FPTFMPQTPN] .
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Spin and statistics

12.1
Assuming / /
. ay| = [53.05T] = @) (0 — @), (12.1)

Then,
O] [P (2), ¥ (y)] 10) = (0] [(x) [W(2), D ()] ¥ (y) + [©(x), ¥ (y) ] (2)(y)

+ W) (@) [ (), ¥ (y)] + () [P(x), ¥ (y) ()] |0)

= (0] [ (@) [ (2), V()] (v) = ¥() [ (), $(2)] ()] [0)

= (0] () [(i@, +m) Dy (t,7)]e(y) [0) — (0] P(y)[(id, +m)Dy(t,r)]ib(x) |0)

(12.2)

where (12.87) of the book is used. We also used the fact that D,(¢,r) is even under the PT
transformation (z <> y) from (12.93) of the book. Then,

(O] [¥(), v ()] 0) = [(id, +m) Dy (t,7)]((0] v ()1 (y) [0) — (O] v (y) () |0))

= [(i@, —i—m)Dl(t,r)](/ (;ﬂz?)%Q_Tmeiq(xy) B / ((;Tpggpz;meip(xy)),
q ’ (12.3)

where we used (12.48) of the book. Notice that the momentum variable p and ¢ are actually
dummy, so we can relabel p — ¢ in the second term above and arrives at

- - . dsq 1 —iq(z—y) iq(z—y)

O [59), )] 10) = 69+ m)Dy (8] o =m0 — o)

= [(i@, +m) D (t,7)][(id, — m)D(t,7)]

(12.4)

As D(t,r) vanish outside the lightcone, this must also vanish outside the lightcone. Since both
D(t,r) and D, (t,r) have support in the future and past lightcones, this will also have support
there. Thus, the anticommutation relations {¢(z),1(y)} is a sufficient but not necessary
condition for the causality requirement [¢¢)(z), ¥¢(y)] = 0 outside the lightcone.
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Quantum electrodynamics

13.1

(a) The Moller scattering (e" e~ — e~ e ) has two Feynman diagrams at tree level, the t channel

and u channel. The channel is the same as the Rutherford scattering (e p* — e p*) with
m,, being replaced by m,, and a sign change on electric charge which will be squared out
anyway. Since there is only one mass involved, we simply use m to denote it.

Modifying (13.83) of the book, we then have

My = o)y ulpy)a(pa)yu(pa). (13.1)

and from (13.91) of the book,
2 8¢’ 2, .2 2 4
M, |" = e [u® + 5° + 8tm” — 8m"] (13.2)

The u channel can be gotten from t channel by switching p; <> p,. This change sends
s — s, t— u,and u — t. We then have

My = —u(ps)y"u(py)u(ps)y,u(p), (13.3)

2
e
U
and

8 4
M, = =5 [+ 8 + Sum? — 8m] (13.4)
u

To calculate the spin-averaged differential cross section, we will also need the cross terms
of the matrix elements.

4

MM, = :—u[ﬁ(ps)v“U(pl)][ﬂ(mmuwz}][ﬂ(pz)%U(pa)][ﬂ(pl)v”U(m)] (13.5)
MM, = :—u[ﬂ(pl)v“u(ps)][ﬂ(pz)VMU(p4)][@(ps)%U(pQ)][ﬂ(m)W”U(pl)] (13.6)
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When averaging over the spins, the two cross terms actually give the same contribution.
Thus,

SO MM+ MM, = 25 T (g, + m p, + ) (p, + ), +mhn] (137

spin

Notice that only terms with even number of gamma matrices don’t vanish from the trace,
so the only possible surviving terms are either with 8 or 6 or 4 gamma matrices. Let’s
check each case.

With 8 ~s, there is only one arrangement,

Tr [y*y*~” v”vp’m”%] = —2Tr [’V‘“'yp’y”vﬁ 7"%] (V¥ ¥y, = —29"7"+")
= —8¢" Tr[y"y"] (77", = 49™) (13.8)
= —32977¢" (Tr[y*y’] = 49"
With 6 ~s,
Tr [vav“vﬁ 7”%%] =4Tr [v“gﬁ ”%} =4Tr [v"‘vﬁ ] = 169" (13.9)

Similarly, Tr [yay”yﬁ 7”%%] = 16¢*”. All other arrangements of 6 s are cyclic permuta-
tion and relabeling of the indices of these two and thus are all equal to 16¢.

With 4 ~s, only one arrangement is possible,

Tr [y v,7.] = —2Tr[y"y,] = -8 Tx[I] = —32 (13.10)

Collecting the terms,

2¢*
Z(MtML +MIM,) = E[—32p122?34 +16m°(p13 + P3s + Pag + Pra + Pr2 + Pog) — 32m7],

spin

(13.11)

where p;; = p;-p;. Using the fact that all particles in Moller scattering have the same mass
and from the (13.65)-(13.67) of the book, it’s easy to see that pjo = ps4, P13 = P, and

P14 = DPog. Thus,

2¢*
Z(MtML + M{M,) = E[_B%)?Q +32m*(p13 + pua + pro) — 32m°")

spin

16¢*
=— te [(S—2m2)2—2m2(2m2—t+2m2—u+3—2m2)+4m4]
u
16¢* 9 2 4 2 2 2
— [ s S 2w (2s = 2m)] (s thu=Y ] md)
u -
16¢*
— te (s — 8m?s + 12m*)
u

(13.12)
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Finally,

1 1 1
T2 MP =D IMo= M = 2 (M + M = MM — MM,

spin spin spin
! 2 2 2 4 2¢* 2 2 2 4 4¢* 2 2 4
= —(u +s5 +8mt—8m")+ —(t"+ s +8m'u—8m )+t_(8 —8m s+ 12m”)
u u
(13.13)
With (5.33) of the book, in the CM frame,
do 1
— — M 13.14
(e = g 2 IMP (1314

spin

and substitute E%M = s. This is the spin-averaged differential cross section for Moller
scattering.

(b) We take pi = (E,p;), b = (E,—p;), vy = (£,py), and p§y = (E,—p;). We then have
P Dy =0p ? cos @, where p = |p}| = IRV 02" —m? and 0 is the scattering angle. Then,

s=Egy = (p1+py)° =2m> + 2pyy = 2(m* + E* + p°) = 4E°
t=(p; —ps)* =2m* — 2py3 = 2(m* — E* + p® cos ) = 2p°(cosf — 1) (13.15)
u=(p — ]94)2 = 2m” — 2094 = 2(m2 —FE*— p2 cosf) = —2p2(cose +1)

o
- Z IM* = S (4p*(cosf + 1)* + 16 E* + 16m’p* (cos§ — 1) — 8m*)
Spm *(cosh —1)°
2¢’ 4 2 4 2 2 4
+ 4p*(cosf — 1)" + 16E" — 16m p“(cos @ + 1) — 8m
4p4(c086+1>2< p ( ) p ( ) )
Lt
+—C (16E* — 32m’E? + 12m?)
4p” sin” 6
4
= — e. 120" ((cos @ + 1)* + (cos 6 — 1)*) + 8E*((cos 6 + 1)* + (cos § — 1)* + 2sin” 0)
P’ sin

+ 8m*p*((cos @ — 1)(cos § + 1)(cos @ + 1 — cosf + 1)) — 32m°E*sin® 0
—4m*((cos +1)* + (cos @ — 1)* — 3sin” )]
4
= — e_ —[2p*((cos 6 +1)* + (cos — 1)*) + 32E* — 16m*p”sin” 0
p sin” 0
— 32m*E?sin® 0 — 4m* (5 cos” 0 — 1)]

(13.16)

In the NR limit, p < E &~ m, and we can pretty much ignore the term with factor of p*
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and replace E with m. Thus we can arrive at

_Z‘M| _

[32E4 32m*E?sin® 6 — 4m*(5cos> 6 — 1)]

spin p SlIl
€4m4
= 1 (32cos” 0 — 20 cos® 0 + 4) (13.17)
P sin
_ 64n’a’m’ (1 + 3 cos” 9)
N p4 sin* 0
do 1 mia® 1+ 3cos’l
70 ez 2 M= 13.18
(o = s L IMPE = J o (F ) (13.18)

spin

(c) I the UR limit, we can treat m ~ 0 and E ~ p. Then,

_Z‘M‘ _

[ p*((cos O+ 1)* + (cos§ — 1)*) + 32E"]

g p*sin’
de’ 2 4 (13.19)
= —5—(94+6cos”  + cos” ) :
sin
o (22 e>2>
sin’ @
do 1 o [ (34 cos®0)?
- - 13.20
(dQ>C 2567 2ECM Z | ECM < Sin4 9 > ( )

spin

13.2

The momenta of each particles have been written out in the Eq. (13.102) of the book. The
electron is taken to be massless as this is very high energy limit.

P =i + b —ph = (B = E' +my, i, — Py). (13.21)
u=(p, — p4)2 = (p2 — P3)2 = mz —2piy = mi — 2pa3,
t=(p — p3)2 = (p2 — P4)2 = —2p3 = 2m§ — 2pou, (13.22)
s = (p +p2)2 = (ps +p4)2 = mz +2p1p = mf) + 2psy.
and

P14 = P23 = Elm}m
p1s = EE'(1 — cosb),

/! 2 2 / (1323)
Pog = my(E — E') +m, =m, + EE (1 — cos0),
P12 = P3g = Emp7
where 6 is the scattering angle. Notice from the equation of p,,, we have
EE'(1 - cosf) = m,(E — E"). (13.24)
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The scattering amplitude is

4
—Z]/\/l\ :—2u + 8% + dtm, — 2my)]

spins

2¢" 2 2 2 2 / 2 4
= my, — 2 + (my + 2 —8EFE (1 —cosf)m;, —2m
4E2E/2(1 ~ cos 8)2 [( P D14) ( P D12) ( ) P p]
2¢?
= —4E'm} + 4E”m’ + 4Em) + 4E*m} — 8EE'(1 — cos 0)m.
AE?E"™(1 — cos 9)2[ P P P P ( )
4.2
=" [ p'm,+ E?+ Em,+ E* — 2EE'(1 — cos )]
2E°E" sin” (0/2)
¢! mp ) 2 /
— EF“+FE —FEE(1—cosf
2E°E”sin” (0/2) | ( )
4 2 2
E E
S BB ),
2FE"sin” (6/2) E E
(13.25)
where we have used Eq. (13.24) in the fourth line.
From problem 5.1,
AR I
{E4 + E'( cos 9)} — M|
3| |1
F -1 2
=————|[E—FE' +m,+E — Ecost]  |M|
647°m, £
1 F E -
- 5 — |1+ —(1 — cosb) ]/\/ll2
64m°m, £ m,
1 E E-E7"
= — M
4 2 2
e E E E
= — |14+ — — = (1 —cos¥d (13.26)
1287° E*sin” (6/2) E? { E" E’( )}
4 A nl
e E |EF F
= — |—=+—= — (1 —cosf
1287°FE*sin* (§/2) E | E  E' ( )}
4 I 2 2
e E |E*+FE 9
= — —242cos”(0/2
1287°FE*sin* (§/2) E | EE' o/ )}
4 T N2
e E [(E-FE) 9 }
= — + 2cos” (0/2
1287°F*sin* (§/2) E | EFE' (6/2)
4 / !
e E 2 (E - E) s 2
= — 0/2) + ——= 0/2)| ,m, < E,

where Eq. (13.24) has been used again in the third to fourth line as well as the second to the
last line to the last line.
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13.3

(a) Actually, the formula only applies for the rest frame of the mother particle. In the rest
frame of the mother particle,

P = (m¢70)7p2 = (E,p3),p3 = (E, —py). (13.27)
Since p; = py + p3, squaring both sides tells us m?z, =2m? + 2(E2 + p?) =4m? + 4p? or

\V mi - 4m3 ~ mV1— 4a° (13.28)

2 a 2 ’

pr=
where p; = |p5| The phase-space integral becomes

1 d3p2 d3p3 1 44
dl' = M| —(2m)%0 — Dy — . 13.29

Integrate over ps,

1
321 my
1 p?c
2 2 2
= M| /dprCS(Q mg + py —myg)

87qu5
W (13.30)

2
I = IM|? / dpfd(COSG)d(b%é(ZE —my)

1 9 o0
— dr——2 §
167rm¢|M| T n;¢ (x)

VL 0, — 2m,)
N 167m, Me Me):

mg—2m,

The 6 function of course just tells us the mass of the particle ¢ needs to be at least two
times as much as the electron mass for the decay to occur.

(b) e Scalar
In the case of a scalar, the decay amplitude is given by

iMg = igst(ps)v(ps), (13.31)

SO

(M|* = g&lu(pa)v(ps)][v(ps)u(ps)]. (13.32)

Dividing the amplitude by a factor of two to account for taking unpolarized measure-
ments for the decay products, and taking the spin sum,

1

% D7 WMl = Ja e[+ m.) (g — m.)]

(13.33)
= 92*(2]723 - 2m§)
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where we used py; = (py + p3)?/2 — mZ = mi/ 2 —m?2. Notice unlike the scattering

amplitude, the decay amplitude square is not dimensionless, as it should be to cancel
out the inverse mass dimension from the phase space integral and give the whole decay
rate a mass dimension 1. We have

g§m¢(1 - 4x2)%

Ty = . 13.34
s T6n (13.34)

This has the correct mass dimension [I'g] = 1.

Pseudoscalar
In the case of a pseudoscalar, the decay amplitude is given by

iMp = —gpti(p2)v5v(ps), (13.35)
Also,
M = —igp[a(ps)15v(ps)]T = —igpv(ps) 157 u(ps) = igpv(ps) 'y v5u(ps) = igpv(ps)ysu(ps).
(13.36)
IMpl? = —gp[u(py) 50 (ps)][0(ps) V5 u(pa)] (13.37)

Dividing the amplitude by a factor of two to account for taking unpolarized measure-
ments for the decay products, and taking the spin sum,

% Z IMp|* = —%gl%. Tr[(p’Q +me)vs (s — me)%}

spins

(13.38)
= —9?3(—21723 - 2m3)
2 2
= gpMy.
Thus,
g?am(b V11— 42°
I'p = . (13.39)
167
Vector
In the case of a vector, the decay amplitude is given by
iMy = igyt(pa)y"v(ps)el, (13.40)
SO
My [* = g [a(p2)y" v (ps)][0(ps)y" ulpa)lefer” (13.41)

Dividing the amplitude by a factor of two to account for taking unpolarized mea-
surements for the decay products, and another factor of three from averaging out the
polarization states of the incoming vector boson, and taking the spin sum,

&Y MU = gt T + ) g — ]

spins,pols
1
= 69‘2/(82923 +16m?) (13.42)

2
= gg‘z/mi(l + 2x2)
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where we have replaced the polarization sum of the vector boson in the first line with
Y poisi €u€y — —gp from the Eq. (13.112) of the book. Thus,

_gimg(1+22%)V/1 — 42

r 13.43
v 241 ( )
* Axial vector
In the case of an axial vector, the decay amplitude is given by
iMy = —gat(p2)y" 150 (ps)er, (13.44)
Also,
My = —igav(ps) 7" u(py)el” = —igav(ps) 57 "7 ulpa)el” = igav(ps) s u(ps)er”,
(13.45)
where we used 77 = 7%9"4°, so
IMal? = —gala(pa) V" v50(p3)][0(p3) 157 u(pa)eler™. (13.46)

Dividing the amplitude by a factor of two to account for taking unpolarized mea-
surements for the decay products, and another factor of three from averaging out the
polarization states of the incoming vector boson, and taking the spin sum,

1 1 o
=Y M = A Te (g + mo)Y s (05 — me)sy ] 9"

6 6
spins,pols
1
= 69124(8]923 - 16m§) (13.47)
2
= ggﬁmi(l — 62°).
Thus,
2 2 2
1-6 1-14
P, = dame(l = 62) iy (13.48)

247

(c) First we should realize that m.,m, < m, = 4 GeV, so v, = x, ~ 0. As such, I'(¢p —
et +e)=T(p—=put+pu)=0~-T(¢— 71" +77))/2=0.375. We can use the ratio of
two decay rates to cancel out the unknown coupling constant.

If ¢ is a scalar,

)1
[SI[9)
[SI[9)

= = (1 —4a7)

e

= (1 —4(1.776/4)*)2 = 0.0972. (13.49)

’1

If ¢ is a pseudoscalar,

F.,. 2 2
= \/1 —da? = \/1 — 4(1.776/4)* = 0.460. (13.50)

If ¢ is a vector,

% = (1+222)\/1 —4a? = (1+ 2(1.776/4)2)\/1 — 4(1.776/4)* = 0.641. (13.51)

e
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The ¢ can not be an axial vector, as it needs the daughter particles to satisfy 62> < 1 for
the decay to happen, as a negative decay rate is not physical.

Since E—T = 0.25/0.375 = 0.667, this is closest to a prediction of vector boson, and thus, the
spin and parity of ¢ is J* = 17, which means spin 1 and odd parity.

13.4

The book has already proved the case with 2 photon fields attached with the fermion loop.
One can also think about a tadpole diagram although this diagram vanishes for QED, as the
photon field has zero vacuum expectation value, but the statement that there is —1 for each
fermion loop is still true even if the external fields attached to the fermion loop is not gauge
boson fields but scalar fields. So to be more rigorous, one should consider a tadpole diagram,
and observe its time-ordered production

Gr = (ig) (0] T{E™ P (1) ha (1)U 6" () (2)} [0) (13.52)

where ¢ is a general coupling constant, ¢ is a general tensor field, and I" a general tensor
structure to encode the interaction between the spinors and the tensor field. We used Greek
letter to denote the tensor indices while Latin letter for the spinor indices. It’s always true that
there is exactly one boson field sandwiched between the spinor bilinear, as this is the only way
that the interaction has a mass dimension 4. One needs to move the ¥,(x) to the left of the
¥,(x) to achieve the correct order that the field that is created is immediately destroyed. That
is simply

o).y () = —. by (2) (). (13.53)

as everything else in the time-ordered product just commuted with the spinor fields and thus
are not relevant.

Now for n external tensor fields attached with the fermion loop, again, as spinor fields simply
commute with everything inside the time-ordered product except with other spinor fields, thus,
everything other than the spinor fields are not relevant for the discussion,

G, = (ig)" (0| T{"-&al(ajl)---wbl (xlwaQ (-732)---%”,1(35%1)@% (37n)---¢bn () }- (13.54)

Every spinor is already in the right order except for the first one and the last one, where the
fermion loop connects back to the origin and the v, (x,) needs to annihilate the v, (z;).

Gy = (ig)"(=1)*"" (0] T{---%n(i’?’n)@al(xl)'--wbl (xlwag (9‘?2)-'-%”,1(51771—1)&% (@,)--}. (13.55)

As (—=1)*"' = —1, we always get a —1 from each fermion loop.

13.5

(a) The order of the diagram is at O(e"). There are 2 box diagrams at this order, as shown in
Fig. |13.1} Then, there are 8 diagrams that has a tadpole loop attached onto an external
spinor leg (4 with an electron loop and 4 with a muon loop), shown in Fig. as one
example. Then, there are 4 diagrams that each corrects one of the external propagators,
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Fig. 13.2: An example of (’)(64) diagrams for ee” — p*p~ with a tadpole attached onto the
external spinor leg.

shown in Fig. as one example. There are 2 diagrams that has vacuum polarization
correction for the intermediate photon propagator (1 with an electron loop and 1 with a
muon loop), as shown in Fig. [13.4 Lastly, there are 2 diagrams that involve a vertex
correction, as shown in Fig. [13.5] Therefore, there are in total 2 +8 +4 +2 + 2 = 18
diagrams at O(e') order.

Gauge invariance means the diagram should be independent of the gauge choice £ variable
in the photon propagator. There are two internal photon propagators in the graph. One
can effectively treat this diagram as the t-channel diagrams as Eq. (9.41) of the book
(replacing the scalars with the spinors). Thus, the diagram is gauge invariant when also
including the diagrams with the photon lines like a u-channel diagram, which is exactly the
diagram shown in the Fig. (no 4-vertex diagram in spinor QED).

Let p; (py) to denote the incoming electron (positron)’s four-momentum. Let ¢ (k) to
denote the top (bottom) photon line’s four-momentum. We can ignore the final states and
parameterize that the photon lines attached to a generic tensor X, 5 just like the procedure
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+

Fig. 13.3: An example of (9(64) diagrams for e"e” — p"p~ that has external propagator

correction for one of the legs.

Fig. 13.4: (9(64) diagrams for ete™ — u* i~ of which the intermediate photon propagator has
vacuum polarization correction.

(a)

Fig. 13.5: 0(64) vertex correction diagrams for ete™ — pu ™.
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in the Section 9.4 of the book. Then,

— ﬂdAt_p )it —k—a)(—ie)?
M= [ G em) s e — = )i

Gh— g+ m) (13.56)
_ me
X 0(po)7” ~ 57" u(p) ()T, 5 X o5 (0. ).
(pl - q) — Mg
where I1,,(q) = =% |gua — (1 — f)%]. We can use the fact that the initial spinors are
on-shell such that they satisfy the Dirac equations:
Plu(pl) = meu(p), (13.57)
0(pa)p, = mMe0(py)- (13.58)
Replacing 11, — £q,,q,, we find
d' d
= —Ee / q p 2m) !5t (p1 +py — k — q)
_ v ( —q+ me) a
X 0(p2)y 4 5 gU(pl)q 11,5 Xa5(q, k)
(1= @) —me
—¢e? / g d'p (27) 64 (py + py — k — q) (13.59)
(2m)* (2m)’ T |
L @pg—gp, — @+ meg) .
X 0(p2)y i, 2 d w(p1)q" 1L, 5 Xap(q, k)
—2p1-q+yq

d* d4
~ e / C DD omyish(py + pa — k — @(pa)r u(p)g"TL s X as(g, K),

where in the second equality, we used the fact p.¢ = pi¢"v"7" = pi¢" (29" —+"7") =
2

p1-q — dp,, 44 = ¢°, and pi = m;.

Similarly, we can have
d'q d*
M, = —¢e / ﬁﬁ(%)%‘l(m +py—k—q)

X @(pz)g(ﬁ ik me)V”U(pl)anuﬁXaﬂ(% k)

In the third equality, we used the Dirac equation.

(q —P2)2 - m?

— e d4q d4p )45t o

= /—(%)4—(%)4(2 )% (p1 +po—k —q) (13.60)
(¢ —2p, - q+¢2g+m 51)

0(p2) u(p1)q M, 3Xap(q, k)

X U
25 q+ ¢
d4(] d4 4 4 _ v «
= —¢e? 2m)"07(p1 + pa — k — q)0(p2)y u(p1)q U, 5 X 05(q, k).

Now, this is just opposite to the M, channel. Thus, M, + M, = 0, which is exactly what
the gauge invariance required. Notice we only required the initial fermions to be on-shell
without ever invoking whether the photons are on-shell or not.
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Path integrals

14.1
We will use ¢(z) =: ¢, J(x) =: J,, M(x,y) =: M,,, and 6z —y) = d,, to save notation.
/ D¢*D¢>exp{z’ / d'wd"y[¢, My, +i / d'a[J; 6, + ¢;Jm]}

/ D¢"D¢ exp{ / d'wd"y [¢3 Moy + 0,y (Ji0, + ¢3;Jy>}}

=exp{ / d'zd'yJ; M, } / Do’ qusexp{ / d'zd'y[(¢} + Ji My, )M, (¢, + M, Jyﬂ}
(14.1)

where, by definition, M;;Mxy = MgcyMggJ1 = 0,,. After redefining the fields to absorb the linear

shift, which doesn’t affect the integral measure as the path integral is supposed to be over the
whole field space, we get

Jropoesnli [ atadtisidtg,) i [ dolio, o
= exp{ /d4xd4yJ o y} /Dgf) quexp{ /d4xd4y¢;Mxy¢y}

=exp{ i [ dtedyr } / D¢>1D¢2exp{ / d4xd4y<¢1<x>—z‘@(x))Mxy(qsl(y)+z‘¢>2<y>>},
(14.2)

where we write out the the two real degrees of freedom of the complex fields.

/ Das*wexp{z' / dody[ 620, 0,) + i / T, + ¢;;Jx]}
_ exp{—i / d*zd'yJ; M, Jy}

X /D¢1D¢2 exp{i/d4xd4y [¢1(x)Mxy¢l(y> + ¢2(95)Mxy¢2(y) + i(¢1<x)Mry¢2<y) - ¢2($>Mmy¢1(y))] }
(14.3)
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Now notice that the fields are really just classical fields inside the path integral. The variables x
and y are really dummy and symmetric if we switch them. Also, both ¢, and ¢, run through the
whole real field space. Therefore, the contributions from the [ D¢, Dy exp{— [ d4xd4y¢1(:ﬁ)Mmy¢2(y)}

and | Do, Doy exp d4xd4y¢2 x)M,, ¢, (y) t must cancel each other. Also, | D¢, exp{i d4xd4y¢1 )M,
y

and [ Dg, exp{ifd4xd4ygb2(a:)]\/[zygb2(y)} are actually the same. Thus,

/ D™D exp{z' / dod'y$iM,,6,) + i / e T, + ¢;J$]}
2
=exp{ / ded'y T M) } ( / D¢1exp{ / d‘*:cd‘*yqzsl(m)Mml(y)}) (14.4)

N e [ty @i )

14.2

(a) In scalar QED, the interaction Lagrangian is

Ly = —ieA, [¢°(0,0) — (0,6")¢] + > A%l|*. (14.5)

As the charge-conjugation C only swaps ¢ and ¢", clearly, a transformation to the photon
field A, — —A, keeps the photon field’s kinetic term and the above interaction term
invariant.

(b)
(Q T{A,, (¢1)-- Ay, ()} ) = / DA, DDy AN (g). A, (g,)
/ DA,DGDG LA (1A (). A, (g,)

- 75 / DA, D¢ Diie'’ d“"‘[A“A (a@)--A, (a,)

- <Q| T{A,ul ((h)"' un(qn)} |Q> )
(14.6)

where we applied the charge conjugation on the second line and used the fact that n is odd
on the third line. Since the charge conjugation only swaps ¢ and ¢* and gives a minus sign
to each A, the integral measure and Z[0] is left unchanged by these transformation. Thus,

(QT{A, (01)- Ay, (22)} Q) = 0.

(c) The above derivation never used any conditions on equation of motion. Therefore, Furry’s
theorem must hold even if the photons are off-shell.

(d) Assuming Weyl basis, when acting on spinors, the charge conjugation does

C . %
¢ — —W2¢ )

. (14.7)
V" = —iyg1).
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However, since (—ivy)(—ivs) = (—i)*(72)* = (=1)(—1) = 1, the integral measure and the
Lagrangian are still left invariant. The derivation then is just follows that in (b). Thus,

Furry’s theorem also holds in QED.

(e) The above derivation relies on the integral measure and the Lagrangian to be invariant
under the charge conjugation transformation. The Furry’s theorem does not in general
holds in the Standard model, especially considering loops involving gauge boson of weak
interaction. However, any fermionic diagrams or sub-diagrams with odd number of photons

attached still vanishe following Furry’s theorem, as these are just pure QED diagrams.

14.3
(a) We have
aazfggg;Jwﬁ+@W®, (14.8)
- , &Ip v Wpr b —ipE
7(Z) __Z/(27r)3 ?p(apep —aye ). (14.9)
Clearly,
;wp(wp$(5)+iﬁ(f)) - / (;i];gapeiﬁf, (14.10)
and
;wp(wpé(f)—m(f)): / (j;?;ga;eiﬁ. (14.11)

1 . i
a, = / Pz (wpd () + 7t (F))e P, (14.12)
2w,
i 3. 1 DNl PE
p = [ &r—m=(w,0(¥) — i7(Z))e™". (14.13)
2w,

(b) Since,

r@szmmm@>

_ /DHe—ifd3mH(£)<I>(§:‘) )
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such that,

= / PIDP e~/ d?’m(f)[@(f)*q"(fﬂn(f) ') (14.15)

/DCD o /DH —i [ d*2TI(& —3'(2)] ‘q)’>)

Do’ (|#) (@'|))
= —izs o)

The procedures are just the field version of expressing the momentum operators in position
eigenspace in quantum mechanics.

(c) Just plugging the Eq. (14.12) into

— (@] / &P \/;T(wpé(@ﬁﬁ(f))e_iﬁ’@ (14.16)

_ /d3:€ 1 (wPCP(f) + %@)e‘iﬁf <(I)‘O>

(d) Just plugging the Eq. (14.65) and Eq. (14.66) of the book into the above differential
equation. We can check explicitly

) ) 1 3 53 armona
d3 —zpa: d 0 d3 —ipT s [dyd 2E(Z,5)(7)®(2)
/ @ 20 N/ e se@

=-N / dPre " / By E(Z, ) e 2] v EEDDE)
dsq iB(G—D)  —iqF CL [ PuddE(2 DD (5
= _N/d3$/d3y//—3€ (q ﬁ)e qy wqq)(y—l)e 5 [ d7yd”2E(2,9)®(7)®(2)

d3/

(7—p)e ™

_ —N/d3 6T ) B e ] LV EEDIDOE

—/d?’y'wpfb(y)e_’py (®]0) .
(14.17)

The y' is just a dummy integration variable. Clearly, this satisfies [ dga:(wp@(f)—i—&%(f))e_iﬁ T (D)0) =
0 and the Eq. (14.65) of the book is indeed the solution of the differential equation.
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/ (cosh) / dpp \/p 2 4 p2eireos?
72p7’
/ dop\/p? +m? & (14.18)

dpp p +m? sin(pr)

- 27r27“ 0
= ——— d + m~ cos(pr),
5o /0 P\ P (pr)

where r = |Z — ]. Now, the integral can be expressed as a modified Bessel function of the

second kind

Thus,

For m = 0,

14.4

/0 dp\/p® + m” cos(pr) = —%K_l(mr). (14.19)

m 0 1
271_ Ta—(;IC,1<mT)) (1420)
1 0 [*
S
—mm/ dpsin(pr)
o (14.21)
o o)
1
T 21
mér

(a) Expanding the f,(a') as a power series of a', f,(a') = ag + a;a’ + ay(a’)? + ..., where a,

are coefficients. Then, notice

af.(a')|0)

a(ag + ara’ + ay(a’)? +...) |0)

(ar(1+a'a) + ax(1+ a'a)a’ +...) |0)

= (ay + 2a5a" + 3ag(a’)® + ...) |0) (14.22)
(fz< ) 0

)
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Thus,

Zl) = z[¥)
c(a+a) f.(a') |0) = z£.(aT) |0) (14.23)

D)ty o) = 2 ) 0.

We thus have a differential equation dg‘;) +df, = 2f., which has solution fz(aT) =

N 6_5( Bins- , where N is some normalization constant.

To fix N, we can notice that
(0]) = (0] f.10) = N. (14.24)

To solve for (0|¢)), we can use the differential equation Eq. (14.16]) in problem 14.3. The
QM version of the differential equation is just

(we+ - )<¢|o> —0, (14.25)

2
which has solution ¢, = (¥|0) = N o3 , which is the famous ground state wavefunction
of a harmonic oscillator system. Requiring the ground state to be properly normalized

1= /dzwowé = |N’|2/dze—wx2 _ |N/,2\/§ (14.26)

) iefé(aT)QJr 2(,uzaJr7%wz2

Thus,

(14.27)

9

AlEN|E

2
Jiema(a V) by

where we replaced ¢ = \/% into the expression.

To generalize the above construction to field theory, we shall do the following replacement

A d3p 1 o
T + _ t —ipT
a, = ¢ (x) = / 2n) —prape :
o [ 1 (14.28)
a, = ¢ (r) = / (2703 2wpape ,
= ¢(z) = §"(2) + ¢ ()
And A )
[¢i(:v)7<bi(y)] =0, (14.29)
= |6 (2),¢ _ [ L 1 e
D,, = [¢ (w),¢+(y)] - / (2@32—%6 : (14.30)
¢~ (y)10) =0, (14.31)
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where we used lower indices to denote coordinates.
Define f(¢7) as f(o") 0) = [®), where [®) is the eigenstate of ¢ such that ¢(z)|®) =
®(z)|®). Expanding f(¢") as

f(65) = ao+a1/dfc¢+(y) +a2/dx/dy¢+(x)¢+(y) + ... (14.32)
With the same procedures as (a), we should arrive
. . Al f(oT
o, f(o7) = Dzyw. (14.33)
do,

Notice repeated indices are being integrated over here and in the following. Then,

0. |®) = (&7 + ;) f(67)|0) = @, f(67)|0)

+ . . 14.34
D, CD | 557y = b, 160 .
dgby
The solution to the differential equation is given by
f(§£+) = Nexp{_(éi - (I)x)gxy(é;/r - ) + 1CI) gxyq)y} (1435)

where £, is given by Eq. (14.66) of the book. It’s easy to check that this solution satisfies
the above differential equation and also has the correct boundary condition.

d(f(¢")) | ) b
xyW = _Dzy[(sx/ygx/y/((b;_’ o (I)y/) + 6yly(¢; N (Dx/)gxlyl]f(¢+) (1436)

= _[Dmygyy/((gz—;’ - (I)y/) + Dry(él_’ - (bxl)gz,y]f((i—i_)

dgq Wq ipa—idy if(d—p)
D,, yy / dy / / 2w e e

Since

d3 d3 wq ipr— zqy 3
= [ 655 | e xS a5
1 (723;9 (:)4) (14.37)
_5/@m3
1
20
d(f(g;ﬁ)) 1 3 7+ 1 3 T4 an
—_— ) r ! =0 r /
Da=gir = gty @ =)+ AL 6

—(02 — ®,)f(87),
which is clearly Eq. (14.34). Also |®) = /\/’exp{—(gﬁi — @x)gxy(g?); —®,)+ 19 Exyq)y} |0)

has the correct boundary condition.

(0]®) = Nexp{— 1 5xy<1>y} (14.39)
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which is exactly the Eq. (14.65) of the book and we have already shown in problem 14.3
that it is the right boundary condition.

Similarly, we can construct the eigenstate of # = #7 + 7, where

N . dgp w —ipT A— . dgp w ipE
W+:Z/(27r)3 Epa;e P R :_Z/(27r)3 gpapep. (14.40)

(7 (), 7" (y)] = / (521;3%5’7@‘5) = %Sxy. (14.41)
So,
1II) = N exp{—2(#, —I1,)D,, (7, —II,) + I1,D,,II,} |0) . (14.42)
Also ‘
(0] 75 oy |0) = —%&cy = — [ﬁ;,éﬂ. (14.43)
Also

(20— Dyy () = T0,), (65 = ©.)E,,(6; — @,)] = 2D, Eny (|77, 6267
n [Hy,fr;, + 1L, GF @, + <1>x¢;])
+ ...,
(14.44)

where (...) contains terms that have unequal number of 7 and ¢", which when sandwiched
by |0) vanish. Also notice the first term [ﬁ;ﬁ;,éié; } just produced infinite c-number

that can be absorbed into the normalization constant N. Thus, the only terms that we
need to calculate is just

QDI/y/Sxy Hy/'ﬁ—;/ + Hx’ﬁ-JH d;;t(py + (piqg;] )

— 2D, &, (I, [ﬁi,q@ﬂ +11,9, [ﬁi,éﬂ + I, ® [ﬁi,gﬁﬂ +I1,®, [ﬁ;,é&ﬂ)
— 0D,y (TS +T1, D5, + 110,05, + T1,®,5, )

yY%
=D, & 1@, +1iD, & TP, + 1Dy E 11 Py + 1Dy E LD,
(6yyHy<I> + 0,7, 11, Py + 6,0, 11, @, + 6,0 11, D,)
= 211, P,
(14.45)
Then, using the identities e*? = e?ePe 3145
(IT|®) = N (0|0) exp{—iIl, D, } = exp{—iIl,D,}, (14.46)

where (0|0) is properly normalized with respect to A'. This is exactly the Eq. (14.21) of
the book. Eq. (14.22) thus follows.
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14.5

(a) The Lagrangian for scalar QED (cf. Eq. (9.11) of the book) is
1 v * - * *
L=ZA0%A, —¢ @+ m*)¢ —ieA, [¢°(0,0) — (0,0")8] + A2l (14.47)
Under a field redefinition, A, (z) — A,(z) +¢,(v),

L— L+e,(x){0,,A, —ic[¢7(0,0) — (0,6")¢] +2¢°4,|0[}, (14.48)

where we only retain terms to first order in €,. Now considering the correlation function

(A%¢"¢), we would find

(A 0" 0) = % /ngng*DA o S d'z[Cre, @) {0, A, —ie[6"(9,6)—(9,07) 6] +2¢° A, |6l })]
o Z O «
X [Aa(@1) + eal21)]0" (22)(5)
= 0= / d'ze,(x) / D¢DG DA, {0, A, (2) Ay ()

+ [—ie(¢(0,0) — (0,07)9) + 267 A, |9[*] Aa(a1)
+ 264(‘T - Il)gua}¢* ({L’2)¢(ZL'3)
(14.49)

This gives the Schwinger-Dyson equation

05 (A, (2) An(21)0" (5) $(x3)) =
ie(d" (2)(0,0(x)) Au(21)0" (22)d(x3)) — ie((0,0"(x))d(2) Ag(z1)" (2) b (23))
— 26*(A,(2)|¢(2)]? Ay (1) 0" (22) D (23)) — 16" (2 — 21) g (0" (22) D (3))

)

|
= e(jiu () Aa(1)§" (2)9(3)) — i (& — 1) g0 (B (22)d(3)),
(14.50)

where now j, = —i(¢0,¢" — ¢*0,0) — 2eA,¢ .

(b) We should consider the correlation function (¢*(z1)¢(z,)). With a field redefinition of
dlz) — e “@g(x) and ¢*(2) = €*W¢*(x), the free (e = 0) scalar QED Lagrangian
transform as

Lo = Lo+ i(0,0)(6"(0,0) — (0,0")¢) + (9,0)° 6], (14.51)
while
& (1) d(wy) — €D G () o ). (14.52)

Following the same steps as in the Sec. 14.8.1 of the book, expanding to first order in «,
we arrive at

[ @y, [ DoD6"S [6°()0,000) - (0,67 (@) 0(w)] (1))

‘ (14.53)

— [ d'sala) 5~ 21) = i8(o ~ )] [ DoDE G (21)6w)
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Chapter 14. Path integrals

which implies

0,0 ()" (21)d(2)) = 6z — 21){(¢"(21)9(22)) — 0(x — 25)(¢" (1) B(x2)) (14.54)

for free theory (e = 0) and where j§ = —i(¢0,0" — ¢"0,¢). However, when generalizing
higher-order correlation functions involving interaction with the photon fields, the situation
is quite different from that of spinor QED. While in spinor QED, the only interaction term
Auzﬁfy“ 1 is invariant under the field redefinition of the spinor fields, in scalar QED, the
interaction term —ieA, [¢"(9,¢) — (9,¢")¢] part is not invariant under the similar field
redefinition to the scalar field. To see the effect in correlation function, we need to use the
full scalar QED Lagrangian and observe it transforms as

£ L4 i(0,0)(6(0,0) — (8,67)0) + (0,0)%9[* — 2(D,0) Ao (14.55)

Then similar procedure leads to

0, (" ()" (21)d(2)) = 6(x — 21) {07 (21)p(25)) — 0(x — 25)(¢" (1) B(x2)),  (14.56)

where now j, = —i(¢0,0" — ¢*0,0) — 2eA,$"$, in consistence with the results in (a). It
should be noticed that the scalar QED current in free theory is not gauge-invariant and thus,
not physical. Only if one include the photon field, does the current become gauge-invariant
and physical.
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Renormalization
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Chapter 15

The Casimir effect

15.1

The Gaussian regulator is

Expanding with w,, = =n:

17T > n e 2 1
=—— (F)* ~(en) = — <1

~3 Zl n:l ne , € Ar <
Now using the Euler-Maclaurin series to calculate the sum:

C n? > e€n 2

Zne —/0 ne dn:—E—I—O(e)

n=1

G &n’ 1 1 2

; net =2 T o)
Then .

T .9 T
E(r)=—-rA"— — —
=3 24r+0( 2A>
d d|m_ .o 1 1
F(a) = ——|FE(L - E =——|= - — =)+
(@ =~ lB@ -0+ Bl =~ [ T8 T+ D)+
m 1 1
= —(—m s — =) +..
24((L —a)? ag)
Now take L — oo and we again get
mhe
a) =
(a) 24a

15.2

Simply take a look on (12.67) of the book,

E:Z[

(a5tas +b5T05) — Ve | .
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Chapter 15. The Casimir effect

It’s easy to see that the zero-point energy is negative while for bosons, the zero-point energy
is positive. The argument would then follow similarly as the scalar case in the book except an
overall sign flipped, which makes the final answer of the Casimir force to have an opposite sign
than from bosons.

15.3

A~ (O.5um)2 ~ 2.5 x 107 ¥m?. Assuming the length of each setate is about 5nm. Plugging
these values into the 3-d Casimir force formula from (15.22) of the book, each setate would

provide a force around F' ~ i’i&A ~ 0.5uN. With a million of setates on each foot and a
gecko has four feet, these would provide a force about 2 N, which should be enough to hold a
gecko weight up to 200g to climb on walls.

15.4

By simple dimensional analysis, since the mass contributes positively with respect to the energy
and has inverse dimension with the length of small box a, it’s expected that the effect of mass
would lead to a term of Casimir force that is opposite to that of a purely massless field. In
other words, the mass should introduce a repulsive term in the Casimir force. For a massive
scalar fields in d dimensions between two plates separated by a distance a, the energy for its
n—th mode

wy = \/(%)2 + k7 4 m?, (15.8)

where ks is the momentum for transverse modes with respect to the dimension on where we
placed the cavity. Thus, the total ground states energy for a d dimensional box with width L
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Chapter 15. The Casimir effect

on each sides is

2’ I(%) 44 s o
L d—1 27T(d_1)/21 nm 2 ) % d — ]_ d
G Ty 1 (G A )
Logq2x 92 INE=SIN e
_ (_)d*l T _ : ((n_ﬂ—)Q_{_mQ)g ( 2 ) 1( 2)
217 I(Hh) 447 a I'(-1)
(£)d—1 27T(d—1)/21 ((T)2 N mQ)% F(%)F(—%U
2’ (L) 44 P(-3)
_ L d—1r(_g) URY: m’* g
- (2) 4 n:1<(a) 7T+ T ) 9

(15.9)

where we have used one of the defining integral of § function to do the integral 5(a,b) =
a—1

o _t
fO (1+t)a+b dt

Now it’s quite clear that for any positive d, the sum is divergent, so we must find an analytic
continuity to positive d and extract the divergent part, so let’s start with negative d first,

2 4 n\2 m®\—%
n= - +_ 2
o (@) + %) (15.10)
Lig i1 a2y,
= (2) ;lnE:l/O x e e dx

Now notice that the infinite sum can be turned into a form involving Jacobi theta function and
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then applied with Jacobi identities

= 5l -
= %[000(0; ;—3 —1] (15.11)

Put this back,

L 1 [ o0 n ‘ira2 m2 m2 1 o0 m2
E = _(E)HZ aZ(/ x_%e_T_Txdx) + g/o e T e Ty — 5/0 x_g_le_ﬂxdm]

L 41 m? | 1 QIC%(Qman) a,m’ am d+1 1 m® a d
= Oy oy S T My - T (Mg |
i we1 (man)? @ @
(15.12)
where K is the modified Bessel function and we have used C,,(z) = 3(52)" [~ exp{—t —Z t"d%‘

The d in first term can be taken smoothly into positive number, so all the divergent parts due to
positive dimensions have been moved into second and third term. For space dimension d = 3,
the second term has simple pole and is not physical, while the third term has no a dependence
and thus is irrelevant to the calculation of Casimir force. Only the first term is relevant,

LPm® X Ky (2
p—_Z2m Z’CQ( man) (15.13)

n=1 n

1

For limiting case m < ', we can expand the modified Bessel function Ky(2man) =

L+ 0O(m?), so oy
2 )
2 e8] 1
B~ 167r23zn 16waz?+'“
- L C(4) + L*m’ (2) + (15.14)
16720’ 1672a

L2 2 L2m2

+
1440a®>  96a

The Casimir force for m < @' limit is then,

dE L*7% L*m?
Fla)= -2 _ _ . 15.15
(@)=~ = "m0 T 06 (15.15)
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Chapter 15. The Casimir effect

Notice the first term is exactly the result of a massless field as the Eq. (15.22) of the book.
The factor of 2 is due to the book has accounted for the two photon polarizations. The second
term is how the mass of particle would modify the Casimir force, which is a repulsive force as
expected.

For m > a”', the asymptotic behaviour of the modified Bessel function is Ky(2amn) —

—2
V e amn - Thus
amn

72amn 2 2 2 2
L L
,/ § i - Lz s(e72m) — Uy [ e (15.16)
167r a n2 167 167°a V am

where Li is the polylogarithm and has the limiting behaviour lim,|—q Li (z) = 2.

The Casimir energy and so is the Casimir force at this limit is exponentially small (but the
force is clearly still repulsive), which corresponds to the classical limit when the mass is very
large.
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Vacuum polarization

16.1

Starting from (16.24) of the book,
T — _62/ d'k —4K"E 2"k + 20K — pp” 4 29" [(p — K)® — m”)]
2 (2m)* [(p — k)> —m® +i][k* — m® + ig]

(16.1)

After manipulating with the Feynman parameters and doing the shift & — k" +p"(1—1),
the terms that can potentially contribute to the p*p” are

14" = 2-62/ d'k —4p'p"(1 —x)” + 4p"p" (1 — z) — p"'p"
(2m)* (k> + p*x(1 — z) — m* + ie]?
_ 2,62/ Ak prpY (=42 + 4z —1)
2m)* [k + p*z(1 — z) — m® + ig]

+ g"'term

5 + g term
62 d 4—d ! 2 1 1 9_d
= —2——p'p'T(2 — S)u'” / dr(=22" + 22 — S)(3)" 2 + ¢ term
0

(4m)*? 2
)|«

with A = m® — p’z(1 — x). Now notice that if we do a linear shift = — z + % for the

second term under the integral,

1 11 1/2 1
de(z — =)(=)*" / x

0,

2

d 1
=9 p'p"T(2 — —);f‘_d/ dzx {—x(h‘ — 1)+ (x —
0

2—% ,ul/t
(47r)d/2 5 )72 + g term,

N | —
| =

(16.2)

vl

which vanishes due to oddness. Thus we have

2 1 2-

1

s = _2(4:)d/2p“p‘T (2 — g) ,u4d/ dr[—x(2z — 1)] (Z) + ¢"term, (16.4)
0

Compared with (16.38) of the book, this is consistent with the Ward identity.

[Sl[o8
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Chapter 16. Vacuum polarization

e Spinor Case:

Starting from Eq. (16.42) of the book. We can see the numerator terms that could
contribute to the p"p” are

N = A[—p"k” — k"p” + 2kEk"] (16.5)

After the shifting £ — k" 4 p"(1 — x), then dropping the linear p" and p” terms as they
are odd under £ — —k, the non-zero terms still contributing to the p"p” are

N = 8p'p” (1 — x)* — 8pHp”(1 — ) = —8p"p’z(1 — x) (16.6)
Then,
d'k —p'p (1 —
5" = 8i62/ VST E— L 93)2 — + g""term
2m)" [k° + p z(l — ) — m” + ig]
62 (TR% d 4—d ! 1 24 Hv
= 8(47?)d/2p p’I'(2— 5),u dx(1l — m)x(z) 2 + g"term (16.7)
0
—8¢” 2 1 n N ' Lo d
- v T2 = 2 dr(1 — z)a(=)
e e et [ e

where § = m® — p’x(1 — x). Again, the result is consistent with Ward identity.

16.2

Notice that the momentum space potential Eq. (16.56) is rotationally invariant, so we can take
the results from the Eq. (3.64) of the book, taking the Born approximation:

V(T) — 262 / d € [ 2(p ) 2(0)}6711)7“. (168)
81°r J_s P+ 1€

One should then close the contour down to perform the integral. For the leading order, this
just gives the usual Coulomb potential
ie? e’
V(r)= —2mi)(—e ") = ——. 16.9

(1) = o (2mi)(—e ™) =~ (16.9)
Now for the correction term, there is also a contribution from the branch cut of the log function.
Due to the prefactor if the ¢ in front of the integral and the fact that the potential, as an
observable must be real, the contribution can only come from the imaginary part of HQ(p2) —
I1,(0) (this is actually a result of spectral representation. See Sec. 24.2 of the book). From the

the Eq. (16.55) of the book,

(16.10)

1(p?) = L (p?) — IL,(0) = —ﬁ /01 dra(l — z)In [mQ - pzl;(l - ”)] .

m
Since the maximum of the z(1 — x) is %L, in the case if p? is space-like or if p? is time-like but
p < 2m, the logarithmic contribution is always real, the contribution can only come from the
region where p > 2m. Using the Eq. (24.19) of the book: In (—A —ic) =In A — i,

Im([I(p* + ic)] = —%/0 drx(l — 2)0(p*z(1 — z) — m?). (16.11)
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Chapter 16. Vacuum polarization

For a given p?, the non-zero contribution of the step function comes from the region between

x:%ﬂ:%,/l—él%z. Thus,

R N (16.12)
1 m? 1 m?
=——/1-4—|1—--(1—-4—)|0(p—2
1 m? om?
=—— /14— |1+ —-|0(p—2
e L]
where we have changed variable u = x — % on the second line. Plugging this back to the Eq.

(116.8), and also do a rotation p — —ip to get the branch cut, we shall arrive at

2 4 2 27 -
e e o 1 m 2m| e P"
V(r)=——-—; / dp——1[1 —4— [1 + —2}

47y 27°r 2m 127 p p P (16.13)
62 62 > —2mrx QI + 1 2

- — | d . 1],
Ay o J1 T

where we changed the variable on the second line p = 2mux.
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The anomalous magnetic moment

17.1

(a) The muon g — 2 only receives correction from vertex correction. Given the Lagrangian of
Eq. (17.33) of the book, there is only one vertex correction diagram involving the smuons
and the photino that can contribute. It is shown in Fig. [17.1, The smuon is a scalar
whose interaction with photon has exactly the same form and sign as the case of scalar
QED Lagrangian described by the Eq. (9.11) of the book. Thus, we can use the results of
Chapter 9 to determine its Feynman rule. Thus, we can write down the loop integral:

. N d'k _ ilgh — k+my) i
iMy = —(Zg)d / —4u(QQ) 4 2 2 . 2 3 .
(2m) (n — k)" —mi+ic(p+ k)" —m;+ie
_gg/ dk (¢h — K+ mz)(p" + 2k")
(

o) iy — KPP+ R

(p" + 2kM) u(qy)

k2—m2+z’€

u(qy).
(17.1)

The minus sign in front of the first line comes from the interaction term of scalar QED.
Using the Feynman parameters, the new denominator is the cube of

(K" 4+ yp" — 2¢)* — A +ie (17.2)
with
A= —ayp’ + zm% + (1 — 2)m} — 2(1 — z)m... (17.3)
Shifting k" — k" — yp! — zq{, the numerator becomes

N* = u(qo)(d, — K +yp — zqh +mz)(p" + 2" — 2yp" + 22q )u(q1)

I~

= u(g2)[(1 — 2)my, + k+mz][(1 — 2y)p" + 2k" + 22¢{Tu(q1)
= %ﬂ(fh)’y"uml) +u(g)[(1 = 2)m, +mz][(z —y)(g5 — ¢f) + 2(q) + ¢5)]ulq)
— % 22(1 — z)mi + 2zm,m ;| a(qe) ¥ u(q:)

(g2)0" u(qy)

— i [2(1 = 2)m, + zmy]| p,u
+ [(1 = 2)my, +my] (v — y)p"a(g)u(@).

(17.4)
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Chapter 17. The anomalous magnetic moment

Again, the p" term’s integrand is antisymmetric under x < y, but the integral measure
is symmetric, so this term vanishes. The terms involving +* only renormalize the electric
charge. Therefore, for the magnetic moment, we shall have (replacing g — ¢)

d'k z(1—2)m, + 2m

1
iMb = p,u(ge)o" ul(qy) [—2i€3/ dedydzé(x +y+ 2z — 1) /

0 @2m)?t (K — A+ie)’
(17.5)
Then,
o o [ —i[z(1 — z)m,, + 2m 4]
Fy(p?) = M—Qies/dxddzéx—i— +z—1 m i ‘
2<p ) e ( ) 0 Y ( Yy )327T2[—$yp2 + Zm?& -+ (1 — Z)m% — Z(l _ Z)mi]
(17.6)
At p* =0,
2 1
1— ;
F5(0) = _mui / drdydzé(x +y+ 2z —1) . 2( Z)m5+zmA i
87 Jo amy + (1 — 2)m; — 2(1 — 2)m;, )
e} 1 2(1— Z)zmu +2(1— 2)my :
o H 0 zm% + (1 — Z)m?l _ 2(1 _ z)mi
Assuming m,, <K mg = mj, this becomes
1
F5(0) = & dzz(1 — z)
e (17.8)
T
12mmg

Then, since g = 2 + 2F,(0), the contribution to magnetic moment caused by smuon and

photino is
am

= R — 17.9
gsusy = gsm 6 m; ( )

Observe that there is an interesting limit if the supersymmetry is restoredﬂ on Eq. (17.7)

such that the mass of each particles is the same as their super-partner’s (m; = m, and
mj =my = 0), we have
1 22
a 2(1—2z)"m
Fy(0) = —— dz——5—
21 Jo (1—2)"m;
1
IR (17.10)
2m Jo
o«
 Ar

Compared this with the Eq. (17.31) of the book, we can observe that this is exactly half
of the contribution of the SM muon-photon loop. In fact, there should be two smuons /i,
and [i5 since in SUSY, the Fermionic degree of freedom is equal to the Bosonic degree of

'SUSY must be broken for the particles and their super-partners to have different masses.
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v

Fig. 17.1: Vertex correction of muon g — 2 from SUSY particles.

freedom within a supermultiplet. Therefore, each fermion actually has two scalar super-
partners corresponding to the left-handed and right-handed chirality. As result, one should
add a factor of 2 to the above result, and concludes that in the limit of unbroken SUSY:

g=242FM0) + 2F5UY(0) =242 x - —2x2x — =2, (17.11)
2 A

The profound result is that in the SUSY limit, the loop corrections from the
SM particles cancel exactly with the loop corrections from their super-partners.
The opposite contribution is really on a fundamental ground due to spin statistics and is the
reason why the SUSY can stabilize the mass of Higgs boson from receiving large radiative
correction. Please also see Ref. [4] for a more general derivation on how SUSY precludes
the Pauli term as such term is not SUSY-invariant.

I found the parts (b) and (¢) of this problem are not sensible. The reason is that a- " > a5™

po = Oy
where a, = 9“2_ 2. Yet, from my discussion above, the SUSY contribution from smuon-
photino should further diminish the SM muon-photon contribution, which is an essential
point. Notice this does not mean the SUSY has already been ruled out since there are
other SUSY contributions to the muon anomalous magnetic moment that increases the

anomaly. The picture in Minimal Supersymmetric Standard Model (MSSM) is actually a
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bit more complicated. After electroweak symmetry breaking, the particles having the same
quantum number mix together. Therefore, the photino is not a physical states. Instead, the
neutral superpartners of SM gauge bosons (electroweakino) mix and form four neutralinos
(and usually, one of them has a "negative” mass, which could also flip the sign of the
contribution of the Eq. if this neutralino is much lighter than the others). In MSSM,
the muon also has trilinear interaction with a sneutrino and a chargino and thus, there are
also contributions from the chargino-sneutrino-chargino (which is usually opposite to the
above smuon-neutralino-smuon contribution).

It might also be interesting to notice that while aEXP > aiMﬂ, the electron a-™" < aSM [6].

(c) See discussions in (b).

2At the point of writing, this anomaly is already at a level of 5.10 [5]. The anomaly, however is debatable
as the anomaly seems to be consistent with the lattice results.
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Mass renormalization

18.1

(a) At one-loop level of scalar QED, a scalar has two kinds of self-energy graphs shown in Fig.
181

Let m denotes the mass of the scalar. The graph (a) can be evaluated as

—1

d*k i
> . 2 — (s 2/ #+k/‘ e #‘{‘k# 5 .
i3y, (p°) = (—ie) (277)4(p )k:2—m2+i5(p )(k:—p)2+i€

18.1
o, d%k PPk +2p-k (18.1)

= —€ 1 dr—s 2 2 2

(2m)* Jo (" =m")(1 —2)+ (p — k) "z + ig]
Shifting k — k + px gives
d4k /8 (1
iY9.(p7) = —e / da:/ —|—p —HE), (18.2)
A+z€]

where A = (1 — z)(m® — p°x) and we have dropped the terms linear in & in the numerator
since it is odd under kK — —k and their integral therefore vanish.

In dimensional regularization, in d = 4 — ¢ dimensions, the loop is

5 _ it d/ / ddk k2+p 1+ z)?
2a(P — A +ig)?

d 1 d 1 d

4—d 2 2

- do |-S— 1 (1-% 1 r(z2-¢

(47T)d/2“ /o x[ 2A1 ( 2>+p( e ( 2)}
2 1

_ ¢ ap(y_ @ 4 A1 eyt

~ 4 F<2 2>/0 dx RIS

2A7E 14 1
e amdp (o _ 4 ld 75 (1 — ) (m’? —px)—i-p(l—l—x)’
(47r)d/2“ ( 2)/0 (L= 2)(m® —p x)}gf,

2

(18.3)

2

where we used F( — %l) = ( g) F( — é). Expanding d = 4 — ¢ we get, in the ¢ — 0
limit, first notice that 7% = 1+ -2 = 1+ 1= — 2+ £ + O((5)?) and thus the whole
2
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Chapter 18. Mass renormalization

(a) (b)
Fig. 18.1: Scalar QED self-energy graphs for a scalar.

integral becomes

Yo (p?) = —% i dx [(2 + )1 —x)(m?® = pPz) + p*(1 + x)2] {g +1In - x)(ilz _pr)}
a [2m? 4p2 m? p2
- _E{T T2
! 2 2 2 i
[ el =+ i
(18.4)

The graph (b) can be evaluated (in d dimensions) as
A’k —i

— =0 18.5
(2m)? K + ie (18.5)

¥y, (p°) = 2ied /
where we used the contraction of the metric tensor g"’g,, = d. Now, this is a scaleless
integral and is both UV and IR divergent and thus formally vanishes in dimensional
regularization. One can refer to the discussion of Section 26.4.3 of the book. The graph
therefore has no contribution to the radiative correction. From now on, we will drop the
subscript a from Ezja(pQ) since graph (a) is the only self-energy graph that can contribute
under dimensional regularization.

The bare Green’s function the renormalized Green’s function are still related as

1
144,

?

iGR (p2 ) Z-Gbare <p2 ) _

- . (18.6)
p* — mp + Sp” — (62 + 5m)m?% + 22(172) + e

where the mass counterterm is defined through mg = Z,,m%. The pole mass is defined by
the pole of the Green’s function:

Sg(mp) = my —mp, (18.7)

where Y (p*) = Sy(p?) + 050 — (6, + da)my + O(e?).
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Chapter 18. Mass renormalization

(c)

e On-shell:
For the on-shell subtraction scheme, m% = m% and thus,
1
Om = —222(7”%)
P
18.8
3a (2 T (188)
=——(=4h—H+-).
4 \ ¢ mp 3

It should be noticed that the ¥ (mp), just like the Eq. (18.50) of the book, has infrared
divergence, and should be regulated with a photon mass m.,. This just changes A to
A= (1—x)(mp—p’z)+ xmi (since we will only keep the leading terms in m.,, which
is from logarithmic term and the m. from outside the logarithmic term must be in
higher orders) so that

2(2)_ « 27712_’_4102_’_7712 P
2PV T T2 T
1 i
+ dz[2(1 — z)m* + (32° + 1)p*] In }
| ol = apm? + 32 + 1 (T R
(18.9)
Thus,
52:_2/2(7”%3)
4 1 o1 11 :
== ———+2ln'u—2+————21nm—;
dr \e 6 mp 3 2 mp (18.10)
2 ~2
=2g<—+ln#—2>.
T \€E ms,
MS:

For MS, the counterterms are simply just the divergent parts plus the constant terms
that convert i back to u. Therefore,

— 3 2 —TE
O = e (6 + In(4me )) : (18.11)
5= 2 (2 fl(dmer) ). (18.12)
2 \ e
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Chapter 19

Renormalized perturbation theory

19.1

The bare Lagrangian of scalar QED is
1
£=—(0,A-0,A,)—¢" (A+m{)d’ —ieo Ay [0 (9,0") — (9,0™) &' +e5 (4010 (19.1)

Renormalizing the field strength, mass, and the charge ("R’ omitted for the renormalized
fields):

0" =2y, A, =\Z3A,, mg= Z,mp, €y = Zep. (19.2)

Also, just like the case in spinor QED, we can also define a 7, = Z,.Z5\/Z5, which encodes
the renormalization of the 3-point interaction. Notice that the renormalization of the 4-point
interaction is completely fixed by orther renormalization factors:

Z4—p0int = ZSZQZ?)' (193)

Expanding the renormalizations around their classical tree-level values let us to extract the
counterterms. For the 4-point interaction, its counterterm is totally fixed by:

04 point = 20, + 09 + 03 + 0(6%%) =20y — 0y + 0(6;{2)7 (19.4)

where we used the fact that 6, = §; — 05 — %53 + O(e}). Since §; = 6, (which will be proven in
the Problem ?? and explicitly calculate below),

54—point = 51' (195)

After the expansions, the Lagrangian becomes

1

L= —ZF,?V — ¢" (A +mp)¢ —iepA, [67 (9,0) — (9,07) ¢] + erALlol’
- 153F31/ — 0,000 — (0yy, +52)mR|¢| —iegd A [Cb ( uﬁb) ( ;LCZS*) Cb] +51€?%Ai|¢|2~

(19.6)

We can read off the Feynman rules from the counterterms.
A counterterm on a photon line is the same as the Eq. (19.14) of the book.
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Chapter 19. Renormalized perturbation theory

A counter term on a scalar line gives the vertex

___>.__*__>._- — i(p%0y — (8, + 83)%).

There is a 3-point vertex counterterm:

= —iepdy (¢} + ¢).
L

- qa <

e Photon 2-point function:

(19.7)

(19.8)

(19.9)

We will stick with the dimensional regularization for this question. Starting with renor-
malizing the 2-point functions. The photon self-energy graph in scalar QED has already
been evaluated in the Chapter 16 of the book and Problem[I6.1] We quote the results from
the Eq. (16.39) of the book (with appropriate factor out of the tree-level propagator):

IL,(p*) = 8_719 /01 drz(2z — 1) E +1In (m2 _pf;(l — I))} .

At order e,
I(p?) = eRlly(p*) + 85+ - .

The on-shell renormalization condition for the photon in scalar QED is then still

I1(0) = 0.
Thus,

(53 = —6%H2<0) = _é 1 + llnﬁ—z .
gr*\3 6 m%

e Scalar 2-point function:

(19.10)

(19.11)

(19.12)

(19.13)

Then, there is the scalar 2-point function, which we have already evaluated in the Problem
m and we just quote results from Eq. (18.8)) and Eq. ((18.10) and remember the on-shell

condition that m% = mp:

(19.14)
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and

62 ) ~2
5, = L (— +1n “—2> . (19.15)

e 3-point function:

Next, we shall renormalize the three-point functions of scalar QED. Notice that the in
scalar QED, there is no Pauli moment term, the form factor is related with the vertex
correction as

I(p) = F(0°)(¢f + ) (19.16)
with p* = g5 — ¢/ and Fy(p°) = 1+ f(p°) + 6, + O(eg). At leading order:
F(p®) =1. (19.17)

At NLO €%, the form factors of the vertex get contributions from the following amputated
graphs:

/” \\
- g + i + /g\ (19.18)
/// \\ //f \\ ,(W\
+ + 4o,
. y a R v TA
Evaluating
p
iMH = I
@ - ~A
~,. 4
g -
S 9" ' (19.19)
— (—je 2i€2 iny / —9 Ay ¢ .
(i@ (277)4 (g2 — /f)2 + i€((b )k2 —m?+ic
_ 263/ d4k qé"—i—k‘“
2m)* [(qe — k)* + ie][k* — m* + i€]

_ 9.8 d'k ! - ¢ + k"
=2 /(27r)4/0 d (K —m®)(1 — 2) + (g — k)°x + ie]?

Shifting k" — k" 4+ ¢hx and dropping terms linear in k" we get

, 'k ! 1+ 2)gy
M“ = —2@63/ (277)4 /0 déﬁm, (1920)
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Chapter 19. Renormalized perturbation theory

where we use the on-shellness of the scalar and A = m?*(1 — z)®. Similarly, the graph
that has the internal photon line emitting from the incoming scalar and ending at the
four-point vertex should contribute as

d'k[* 1 r
M = —2ie3/ 4/ N L W (19.21)
@r)'Jo K —A+ig

Reading off the coefficients of (¢ + ¢4), we observe that together, these two graphs
contribute to f(p°) as

s oo [ dE [ 1+
107 =20 [ Gy |, e
2 1
— _2@;%#“/0 dz(1 + ) (Aj_g) r (4 ; d) (19.22)

2 ~2
3 3 7
8 € 2 mp 2

Then, there is also the

p§
iMF = 70N p+k
w \
— (—26)3/ d4]{j —igVa (qy +pz/ + ku) Z (pll« + 2]{:#);(1{;& + qa)
@2m)* (¢ — k) +ie (p+k)? —m? +ic K _m?tie !
B _263/ = /1 dedydzd(a +y+ = — 1)L 2RV £ 23+ 20 01 = 0)
(2m)* Jo [(k+yp—2q1)° — A +ie]’ ’
(19.23)

where A = —zyp® —I— (1-— z) m?. Shlftlng k' — k' — yp" + 2¢!', and also remember that

D =q ¢ —m>=—p-q = —L, the numerator becomes
NP = [p"(1 = 2y) + 22} + 2k"]
X (K + K (=2yp” + 220 + 0"+ @1 + ) + 02—y — L+yz—2) +mP (2 + 2+ 1+ 2)]
= [2(df + &) + (= — y)p" + 2k
X [B+E((z+ 1)) +¢5) + (x—y)p") —p°(L+ (L= y)(1 — 2)) + m*(z + 1)°]
= 2K"K" [(2 + 1)(q g3) + (x = y)p"] + k* [2(d} + a5) + (x — y)p"]
+ (g + @) + (@ =y [P+ (L= y)(L =) +m*(z +1)°] + -

[
= k? [(?ﬁ—z%—l—z) (¢ +a) + (2+z) (:v—y)p“}
+ (g + @) + (z —y)p")] [ (142 =P+ (L= 2)(1 = y)] +---,
(19.24)

where --- contain the terms that have odd number of factors of k" which shall vanish
after integration. Also notice that the (x — y)p" is antisymmetric with respect to x <> v,
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Chapter 19. Renormalized perturbation theory

but the rest of the integral is symmetric so any terms involved with it also vanishes after
integration. The only non-vanishing parts of the numerators are then

N" = (¢ + ¢5) {kQ (3 - z% + z) +2(m*(1 42 = p’(1+ (1 —2)1—y))|. (19.25)

Reading off the coefficients and taking the limit p* — 0, we see its contribution to f (pz)
is

K (24224 2) + miz(1+2)?
(K2 — (1= 2)?m% +ie]”
(19.26)

4 1
f(0) = —22’6%/ %/ drdydzé(x +y+ z — 1)
T 0

The k* term is UV-divergent, and we can use the dimensional regularization and then
expand in d = 4 — ¢ to regulate that. This part is

K2 (2422 +2)

L ddk 1
—2ieg W drdydzé(x +y+ 2 — 1)
0

e []{52— (1_2)2m%+26:|3
- d [ 2+ 22+ zd _

:—22'(‘3%2#4%@1/0 da:dydzé(:v+y—l—z—1)—+ 2+Z ((1—z)2m%)3—2p(

2 1 ~2

€Rr 1+32z 1+3z2 i z
= B drdydzs 1 | 2

8”2/0 rydzole s >[ c 2 n(l—z)zm?{ 2
_ k[ {(1+3z)(1—z) L4890 -2 g (1_2)2]

s Jo € 2 (1—2)°mb% 2

2 ~2

€r 1 1 M 7
_ R g D)

872 (5 T 12)

(19.27)

The rest terms are UV finite but IR divergent, so we can set d = 4 in them and add a
photon mass which changes A to A = (1 — z)Qm% + zm?y when p* = 0. Then, we evaluate

mypz(1+ 2)?
[k2 — (1= 2)*mp — 2m> + ie]g

mypz(1+ 2)?

™

L, I
—2ieq W dedydz6(x +y+ 2z — 1)
0

2

1
R
= — drdydzé(x +y+2—1 19.28
167r2/0 ydz0(@ +y )(1—2)2m23+zm3 (19.28)
2 2
€r Tn/,Y 35
ST P A
2 ( my 12)
Summing over Eq. ((19.22)), Eq. (19.27), and Eq. (19.28)), we get
2 ~2 2
€n 2 i A 1)
0)=— |- In—+In— — -+ —+—
/() 87r2< P L SR DR T
(19.29)
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5, = —f(0) = Ch (2 +1n “—2> . (19.30)

=5 2 2
8 5 m;,

Compared this with the Eq. (19.15)), we observe that d; = d, is also true in scalar QED.
We shall prove Z; = Z, in Problem ?77?.
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Chapter 20

Infrared divergences

20.1
dp 1 4 ¢4
/dHLIPS ]11 / 27rj3_2E 7)0"(p—p3s — D1 — D)
d3p3 dp4 1
Y E.—E,— E
(Qw) 2E; | 2E,2F, Q- By~ By~ B,

where we integrate over the 3-momenta p.. Let x; = 2%, Ty = 2%, T,

a:i, = 2% =z, + . Then, dp, = deip?dpi = dQ%gx?dxi. This leads to

1\’Q’ 1
/dHLIPS = - /dQ I‘ldxl/dgpngdex—,(s (Q — E3 — E4 — E’Y)

or ) 64 ’
1\’ Q2 1, /
B % 32 dQ xldxl dQP3x2d$2x_/§ (2 — Xy — X1 — ZE,Y).
v

The xfy has is an implicit function of the 3-momenta of p; and py:

2F 2 S o
fo = ?7 = 6\/(p3+p4)2+m§ = \/xf+x§—2x1x2c089+45,

where 6 is the angle between the p; and py. Then,

/
dey, 11y

dcosf x;

(20.1)

— 3, and

(20.2)

(20.3)

(20.4)

Also, notice that the boundary of .CE;, is set by € = 0 and 7, but the delta function also forces

that :17'7 =2 —1x, — 9. For 8 =0, we thus have

(20.5)
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For 6 = m, we have

/

(%)2 = () +29)" + 48
(2= (31 4+ 22))" = (21 + 22)° + 48

20.6
l—zy—xy=p ( )
Tq —|‘ Lo = 1 — 6
/dHLIpS 12877 xldazl/aszfvg/ 0039 RO — L)
Q 4

/ / 11—z, 901
T 1987 o8

Here, we arrived at the phase space formula in Eq. (20.42) of the book.
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Chapter 21

Renormalizability

21.1

The 1PI diagrams for the superficially divergent amplitudes are

o (AA):
<AA> = 'W\/\/\@\/\/\M« -+ «W\@M —+ 'VW\@'\/\M
(21.1)

All these 1PI diagrams go like
¢k 1\ /(1 ) B

[ () () ort = 0o o1

o (Yy):
(W) = *‘Z:;E—» + + 4>_®_k
(21.3)

All these 1PI diagrams go like

(W) N/é%g (%)3 (%)2 ~A = D=1 (21.4)
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Chapter 21. Renormalizability

o (YyA):

All these 1PI diagrams go like (the last diagram actually has an ABJ anomaly due to the
triangle sub-diagram and thus actually vanishes)

(p A) N/dg—k (%)4 (i)z ~A = D=0. (21.6)

(2m)® k2
o (AAAA):
(AAAA) = >gi< b (21.7)
where the --- contain all the other variations. They are all characterized by attaching a

photon line onto and closed on a fermion line or onto and connects to another fermion
line. Also, there can be a permutation of the interchanging the final states. All these 1PI

diagrams go like

8 6

(AAAA) ~ /% (%) (%) ~A = D=0. (21.8)
T

These have exhausted the superficially divergent amplitudes in QED at 2-loops. Notice from
the explicit enumeration, the superficial degree of divergence does not change from that of their
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Chapter 21. Renormalizability

corresponding 1-loop result, as can be compared with the Table 21.1 of the book. Thus, the
same four counterterms must be able to remove all of the UV divergences. For higher point
functions, there are no superficially divergent amplitudes and the argument shall just be the
same as the case in 1-loop.
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Chapter 22

Non-renormalizable theories

22.1

The first order perturbation correction in quantum mechanics due to this term is:

(0] s 9) =33 4 (25 1)

(o)
_ 2_;2 :(E,SO))?’ +3(EO2(V) + 3(BEOY (V) + <V3>}

= o (B =3B (1) + 3 () - ()

2m r r
Rt RPN ) ]
om0 8 "4l "+ DI+
(B {7+ 12n 8n® ]

2m” [+5  (+3)+D]
(22.1)
where w(o) is the unperturbed wavefunction, Efzo) = 86—22 is the unperturbed hydrogen energy
Tagn

level, of which ag = e‘é—’; is the Bohr radius.

When p* < m?, the logarithmic term due to quantum loop effect is less suppressed than
5\ 2
the quadratic (£5 ) term. Thus, the quantum loop effect is in fact easier to be measured than
m

the higher order relativistic correction.

22.2

The on-shellness of the spinors means the ]‘Lp; part in the numerator of the propagator dropped
. . M
out because of the Dirac equation. When s < M,

1 1 1 1 s 5\2
—S—MQZ_W( _%>—>—W{1+W+(M) +} (22.2)
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Chapter 22. Non-renormalizable theories

Thus, the next order in the expansion of Eq. (22.15) of the book is

iM - iQQﬁ@’Y”Ul%V”M- (22.3)
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Chapter 23

The renormalization group

23.1

(a) At 1-loop of QED, the operator contributes a very similar diagram as Eq. (23.42) of the
book. We have in dimensional regularization,

M= O d'k w(p)y (p, — F+m)(p, — E)(p, — F)(p, — k +m)y ulpr)u(ps)v(ps)
M= céut | (2" 1 — ) = ml{(ps — k) — IR

(23.1)

To cancel the divergence, we can renormalize the operator with CrZq (@) (@) of which
Zc =1+ ¢, such that
2
€r 4
0o = — —-. 23.2
o= -2k (232

Then,
CrZe () (i) = O}—é—j<&(O>a¢<0’><zﬁ<0>a¢<°>> (23.3)

Since the coefficient of the bare operator is independent of u, we have

d (CRZC’> . CRZC’ lidCR iaZC deR 1 5’22 d@R:|

— - ——=u—|. 23.4
22 22 CR d/,b ZC 863 a d,LL Z2 aeR,u d/,l/ ( )

O:udu

For leading order term,

_ pdCy _ (_%+%) _ ( 8en__ dep ) (-2 >__é__g
1CT R dp dep | Oep 16em>  16er P '
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(b) Solving the differential equation gives us

[ o) (o
Calp) = Calpo) o | [ 28 )da]

oty B(a)
[0 3da
= Cr(po) exp / _Z_] (23.6)
L o(po) «
3
a(p) \ *
()
r{#o) (o)
Using Eq. (23.32) of the book, Aqrp = 10%% eV = 10*"" GeV, and setting 1o = 1 TeV, we
can get
Cr(p =1 GeV) ~ 1.0082. (23.7)
23.2

The relevant Lagrangian interaction is the Eq. (23.40) of the book:

Gr _ _
Ly = ngm*‘PLwWW‘PLw% + h.c.. (23.8)

The tree-level diagram then is the Eq. (23.39) of the book:

My = i%(ﬂﬂupfzuﬂ(ﬂﬂ“PLM% (23.9)

where we use the shorthand u; = u(p;) and the momentum indices follow the Eq. (23.42) of
the book.

The 1-loop diagram is just like the Eq. (23.42) of the book except that a different Feynman
rule applied, which leads to

A @62 wea [ A [y (P, — K A+ me )y Prog][asy* PL(p, — F 4+ my, )y ud]
= et [ 1 =B =) (s = B — R - 0

To extract the counterterm, we can set all the external momenta and masses to zero. Thus,

+ finite

M = GF( o2 4d>/ d’k [ty Fy" Prva] [usy Py u,]
B ! d 6
(2m) k
A% kK o i ) |
/ (2m)? kS ) (@27 Prod] [“37“ Py ul} + finite
(23.11)

(—iehn*™)
= TF <—i€%/f‘_d> / %%ﬁ) (277 7" Py [Hsv*‘vﬂ vaPLul] + finite
(—iehut™)

ack 1Y\ L, - |
/ (2ﬂ)d%> [4o7"y "y Prog) [uzy"y"y" Pruy ] + finite,
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5 5
where we used the fact that {75, 7"} = 0 such that Py = HT”W“ = W“H[TV =1"Pg/. Now
with the gamma matrices identity:

VA = gyt gt = gy — i (23.12)
By using the anti-symmetric property of the Levi-Civita symbol, one immediately observes that
’YQ’YV’YM — ,YM,VV,YOé + 22'8/3/1”04,-}/375. (23.13)

Using this gamma matrices identity and the Fierz identity Eq. (11.37)), the two spinor factors
can be transformed as

[y Prog] [ty Y Pru] = [172 (7“7”7“ + 2ig P 75) Pm] (57" 7" P
= 16 [t7" Pruy] [u57" Pproy] + 2ie”™ [ﬂz’YB”YSPLW] [ty "y Ppuy
= 16 [uyy" Ppuy] [tgy" Prvg) + (2i™*)(—ie”™®) [52’75’75PLU4} [HWP’VBPLUJ
= 16 [uyy" Pruy| [usy" Prog) — 12 [%VBPLW] [QSVﬂPLul}

= 16 [uyy" Ppug] [ugy" Prvy) — 12 [ﬁﬂﬁpﬂh] [ﬂﬂﬁPLw}

= 4 [uyy" Pruy] [usy" Proy]

(23.14)
where we used the facts that €’ is anti-symmetric while the metric tensor ¢" is symmetric
in the third line, the contraction of the Levi-Civita symbol &” Ko e = —6(5? as well as
7°P; = —P; in the fourth line, and another time of Fierz identity Eq. (T1.35) in the second to
the last line.

Thus,
Gr -2 4-d d'k 9”5 _ _ .
M = 7 (—4zeRu > /W% [Uoy" Pru ] [tisy" Pruy) + finite
d'k ¢"°
_ 4l 4—d/  finite (23.15)
°< R T

2
1
= M, (e—RQ/f—> + finite.
817 €
To remove this divergence, renormalizing G by G = GrZs, and expanding Z,5 = 1 + 04, we
can the extract the counterterm:

e% 2
=— —. 23.16
G 167T2 c ( )
Now, notice that §, = —1‘63%25 = Jq at one-loop level and thus, Z, = Z,. Using the fact that

neutrino is neutral, Z,, = Z,. = Zy:

Gr

- - GrZn , - _
75 2a (" P, (0" Pua,) = B0 (O Py (O Prpl). (23.17)

V2 2
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Setting up the RGE, we get

i GRZG . GRZG idGR 1 OZG d€R 1 (9Z2 dGR
'ud,u Ly - Zy |Gpg du ZG 8eR'u Ly 86RM du

O:

and thus,

p dGr (_aZG ez

VG—G—RW e @) Bler) =0

(23.18)

(23.19)

since Zg = Z,. As a result of the vanishing anomalous dimension, G = G,. In the Eq. (23.38)

of the book, A = 0.

23.3
_nd 2
d(mp,) dp 1 du vm(AR)
=7 p) e =~ (Ap) = —d)\p = d\
) Y AR)
k() = (o) exp [ [ dAR]
Ar(to) 5 R

is the general solution.

For small Ag, we can retain only the leading order dependence of Ap in B(Ag) =

A\p
Von = th( )_3){

Integrate out the beta function to extract the leading scale dependence of Ap:

d 3\%
Ap) = u—A\ =
5( R) Mdﬂ R(M) 1672
dA\p 3 d_u
d(N%)  167°
1 1 _ 3 ln@

Ar(ft) B Ar(po) 167

The general solution then goes to

(23.20)

32
& and
167

(23.21)

(23.22)
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where we used A to be small so that we can expand the In. Hence, the general solution reduces

to

i) = i) () (23.23)

for small Ap.

23.4

(a) We can use the four-point function (¢;(z1)®;(x2)¢;(23)¢;(x4)) to renormalize the coupling

constant A\. Without loss of generality, I shall assume ¢ # j. Renormalizing any other
four-point functions shall give the same results. Much like the N = 1 case, at 1-loop order,
we have the diagrams shown in Fig. [23.1] Note that for s-channel, the internal fields ¢,,
can either be m =i or m = j or m # i # j.

N ’ S~ o8 ¢j -7 S~o 2 t
\ ¢l // S -7 \\\ ¢ 4
N O, , S Se ,/

A VRN 4 Qb] /N / \\\ /

«_ < o L) o, Giv KO
. N ¢j A" N/ \\

/ qb N ¢Z PN ¢] - \

m \ - ~ QS
// ¢z \ P S o /,/ J \\
/ N -7 S -7 ¢’L \
(a) s-channel (b) t-channel (¢) u-channel

Fig. 23.1: Four-point diagrams at 1-loop order of N-fields ¢* theory.

Since the counterterm 9, is all we need, we can set zero external momenta, all of these
loops give the same loop integral, but with different multiplicity factors M (expanding in
d = 4 — ¢ dimensions):

i\ )2, 2(4—d) d'k i i 2(4—d) )\%«zi

For the multiplicity factors,

e s-channel:

M:%x Gfx (232 x 2% 2)(N = 2) + (2 x 41) + (2 x 41) :%(N+4), (23.25)

where the factor of & comes from the perturbation expansion, the factor of (};)2 comes

|
from the normalizaiion of couplings, and the rest come from the number of ways of
Wick contractions. The term with N — 2 in the square bracket counts the number of
diagram with internal fields ¢,, differ from neither initial states nor final states. The
other two terms are for the internal fields to be the same as either the initial or final

states.
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e t-channel:

1 (1)’
MZEX(Z) X (2x2x2x2x2)=1 (23.26)

e u-channel: Same as ¢-channel:
M =1. (23.27)

Overall, M = (N + 4+ 2+ 2) = £(N + 8). Hence, the loop integral is

_ 20 (N + 8))\?%2

23.28
167 ¢ (23.28)
so that (V4 8)p1
+S)AR
0y=——5—-. 23.29
A 1671'2 c ( )
Since the bare coupling, \; = ,u4_d)\ rZ>, is p independent,
d uwod wod
0=pu—(N) = pu°A\gZ ——A ——0 |- 23.30
Md,u(O) 1% RA<5+)\Rdlu R+Z>\d’u>\> ( )
Hence, the S-function to order A% is
d N + 8)\7
B0e) = 1) = | —erg + BN (2331)
du 167

Similarly, we can extract d,,, from the scalar propagator 1-loop correction. The multiplicity
factor is given by

1 1
M:ZX[QX(N_1)+3X2]:§(N+2)’ (23.32)
where the term with N — 1 in square bracket counts the number of diagrams with internal
line differ from the initial and final states and the other term counts with the diagrams

with internal line the same as the initial and final states. Hence, the leading graph of ¢;
propagator correction is (expanding in d = 4 — ¢ dimensions)

(N+2Apmip 1

Sy (p?) = T (23.33)
Hence, to O(\g),
(N +2)Ag 1
Opy = —————. 23.34
- T (23.34)

As the bare mass m®> = m%Z,,, and the fact that all fields have the same bare mass in the
Lagrangian, we have the RGE:

d, 5. d ) 1 d , 1 d
0= p(m?) = p— (M2 Z) = Mm% Z | — pimeiy + —— 23.35
g () = g (4 2,) = o m(m%udumRJerudu . (23.35)
and hence
12 d 2 1 35m d)\R (N+2))\R 3
= — +O03) | 23.36
mhdn T T 7, 0N dp 1672 () (23.36)
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(b) The Wilson-Fisher fixed point is where the RHS of the RGEs vanish non-trivially:

d 5 (N+2)Ag

2 2
— = O(Agr), 23.37
#dumR 162 mgp+ ( R) ( )
d (N +8)\%, s
— A= —edg+ ——E L O\, 23.38
'udu R EAR 1672 ( R) ( )

The location of the Wilson-Fisher fixed point to order ¢ is

\, = L 0 (23.39)
= m, =0]. :
* N + 87 *
(c) At this fixed point, the anomalous dimension is
(N +2)e
=-— 23.40
The critical exponent is
1 N +38
v i (23.41)

T 2-7, 2N+16— (N +2)e

Doing epsilon expansion in d =3 = ¢ =1, we have

N +38
= . 23.42
TNyl (23.42)
Note that for N =1 (3D Ising model), we reproduce
) 0.6 (23.43)
Vo1 = — =106 :
V=T
For N = 2 (superfluid transition in *He), we have
10
vn= = g = 0.625 . (23.44)

which is close enough to the theoretical estimate using Monte Carlo simulation including

higher order corrections [?]:
v =0.6717 . (23.45)
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Implications of unitarity

24.1

(a) There are four poles in the integrand in Eq. (24.29) in the complex k° plane:

ko = +wy, F ic and ky = py & wy_, F ic. (24.1)

(b) Closing the contour upward picks up the poles at ky = —wj, + ic and kg = py — wy,_, + ic.
We thus have

, (M)Q/ d”‘k: i i
iMoo (D) =
loop (P") 2 ( Pom® ik’ —m® +ice
( 1 1
— (k- _
2wk r(k=p) ko —wy, +1e kg4 wy — i€

( )1 (e s
ka p —Wy_p +1e kg —py+wp_, —ic

— (i;) (%)4 [ (M) I (k — p)(2mi)d(ko + wy)

N (%ip) T (k) (270)5 (ko — po + wkp)} :
(24.2)

The first delta integrates to 0. Thus, only the second term should contribute.

(c) Since the delta function is real, an imaginary part again can only come from ¢ times the
Feynman propagator. Keeping only the second term:

2Tm Moo, (p°) = a / (d—k (;> [(2m)6(K* — m*)(27)6 (ko — po + wi_yp)]

2 2m)* \ 2w,
Norod'k . . .
= [ s(em2 - w(en) {5((16 R e L
A fd'k AUV ‘ .,
N —7/(27)4(—27@5(/{ —m*)(=2mi)o((k = p)” —m”).

(24.3)
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We thus recover Eq. (24.33) of the book. Notice that to get the second line, we used the
Eq. (24.32) of the book, and then notice the fact that the second delta function can not
be simultaneously satisfied with 6(k* — m?).

The loop integral is proportional to
d'k i i i

2m)' Kk —m® +ic (k—p)° —m® +ic (k—p +ps3)° —m® +ic (
1 1

Z‘-/\/lloop ~ (ZA)5/
24.4)

X 2 2 . 2 2 .
(k+py—p5)" —m” +ic(k+py)” —m” +ie

Following previous steps, closing the contour on the upper plane, and noticing that the
6(k” + wy,) from (k) and the 6(k° + py + wyy,,) from Ip(k + p,) always integrate to 0.
Thus, we can expand the loop integral as

(;#Tk);;HF(k)HF(k + D)

1 .
[ (=g ) @S = b MLl =+ )Tl = )+
k—py
(24.5)

iMloop ~ (7’)\)5/

where the - - - contain terms that have each of the three Feynman propagator in the bracket
being replaced as a delta function exactly once. Now notice that since this is one-loop, there
is only one unknown loop momentum k. For each terms, we can at most replace one more
Feynman propagator with a delta function without violating the momentum conservation.
This means only one of the four remaining Feynman propagators in each term can be put
into on-shell. Further, since the delta function is real, the imaginary part can only come
from ¢ times the on-shell Feynman propagator. Using the Eq. (24.32) of the book again
reproduce what is expected from the cutting rules.
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Chapter 25

Yang-Mills theory

25.1

From Eq. (25.6) of the book:

1 a 1 a a abc c
;CYM - _Z Z(F,uu)z - _Z Z(a,uAu - aZ/Au + gf ’ AZAV)z’

and upon the gauge transformation Eq. (25.67) of the book
1
Al (z) = Aj(z) + E(‘?Moza(x) — “bcab(x)AZ(x),
we observe that
FS, =0,A% — 0,A% + gf*™ AL A
1
— FSV + E [aua,joza — Q,@ua“ + .- ]

+ ] = 9,(a"AS) + 9, (" AS) + (9,07 A + AL(D,a°) + - -+ ]

T gf ™ [ atAL) A — AL(fTatAL) £
where - -- contain terms that are higher order in a.. Notice
¢ 0,0,0" — 0,0,a" = 0 simply cancelling out.
[

fabc [—8M(OébAlc/) + ay(abA;) + (6uogb)A,cj + AZ(ayO_/c)]

_ fzzbc :_aﬂ(abAlC/) + 81/(041)14;) + (8‘uab)A16/:| + faCbAZ(auab)

= 17 [0 A2) + 0, (0 A5) + (D, AL — 450,

_ fabc -—Oéb(auAi) 4+ ozb(@VAZ)]
= —f"a" (9,45 - 0,45),

(25.1)

(25.2)

(25.3)

where we relabel b <> ¢ for the last term to get the second line, and then switching b <+ ¢

to get the third line.
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Chapter 25. Yang-Mills theory

gfebe [_<fbdeadAz)Alc/ _ AZ(fcdeadAle/)]
_ padegh (_ e AC AL — AZ febe 4 )
—ab (_faecfebdAZAi _ fadCfcbeAzA,ej>
= abAiAi (_facefcbd _ fadCfcbe>

— o AZ A° (_ feac pebd _ pade fcbe>

_ b pabe pede Az AC

where we relabel the dummy variables b <+ d to get the second line, and another relabeling
of d <+ e for the first term to get the third line, and another relabeling of ¢ <+ e to get
the fourth line. Lastly, we use the Jacobi identity to arrive the last line.

Collecting the uncancelled terms, we then proved Eq. (25.71) of the book about the transfor-
mation law for the field strength tensor F},:

a a abc b e
F,, — F, —["a'F,. (25.4)
Then, plugging into the Lagrangian,
Lyv —= Lym — fabcab(FﬁuFﬁu + FF) = Ly, (25.5)

where the terms vanish because f“bc is anti-symmetric with respect to a <+ b but the terms
inside the bracket is symmetric. Thus, the Yang-Mills Lagrangian is gauge invariant.

25.2
e Eq. (25.20):
1 1
ToT® — —{T“,Tb} 4= [T“,T”]
2 2 (25.6)
_ = a b — ; pabcrpe
_2{T,T}+2@f e,

To get the symmetric part, one can notice that since T%T? is well-defined in the funda-
mental representation, it must be closed. Therefore, it should be an element that can be
represented as a linear combination of the identity matrix I and some generators T¢ (in
other words, the symmetric part can be separated into a trace part and a traceless part):

{T“, Tb} — AL+ BT* (25.7)

for some group invariant coefficients A and B. The coefficient A can be extracted by
taking the trace for both sides:
1

S0 = tr{[T“Tb]} — AN, (25.8)
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Chapter 25. Yang-Mills theory

where we used the normalization condition for the fundamental representation Eq. (25.19)
of the book. Thus, A = ﬁ(Sab. To determine B, we can multiply both sides of Eq. (25.7))

by a generator T from left and then taking the trace:

tr [Td{Ta,T"H - %5”1’ tr [Td] + Btr [TdTC] — Btr [TdTC] _ gad‘i (25.9)
Thus,
B=2tr _TC{T“, Tb}]
— 2tr|ToTT® + TCT”T“]
— 2tr[ToTbTe 4 T“TCT”] (25.10)
—2r -T‘L{T", T}]
= dabc’

where we have used the cyclic property of trace. Thus, we arrive at Eq. (25.20) of the

book: . . .
TaTb _ ab - abcTc s abcTc‘ 25 11
2N5 + 2d + 2@f (25.11)

e Eq. (25.21):

tr [T“TbTC] — —tr [T“{Tb,Tc}] v %tr [T“ [Tb,TCH

dabc + Zibed tr |:TaTdi| )

I S I SN R e B R

(
(d“bc +i fbcd5“d> (25.12)
(
(

e Eq. (25.22):
tr [T“TbTCTd} — tr [(T“Tb)(TCTd)]
1 1
— tr |:WH25ab50d + Z(dabe]—ve + ifabeTe)<dCdfo + chdfo):|

1 1
:_6ab50d -
4N +4
1 wbeca 1
:_6(1 6(: -
AN +8
. 1 ab ccd 1
= 4N§ o +8

where we plugged in Eq. (25.21) and dropped out the traceless terms to get the second
line.

(@ + i) (@ + i) e[ 7T (25.13)
(dabe + Z-fabE)(dcdf + Z—fcdf)éef

(dabe + ifabe)(dcde + idee),
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Chapter 26

Quamtum Yang-Mills theory

26.1

There are only the following ghost self-energy diagram as well as the counterterm diagram
contributing the ghost 2-point function at 1-loop:

p b
-
p—k
_(_\2 pdcb pacf d'k po ey v —g"+( -k k | oY
= (=9)°ff (27r)4 (p K)p [Z 12 0 (p— k)2
) o Ak —(p—k)-p+(1-=9 [(pfkiéf](p-k)
CA5 /(271’)4 /{32(]9—/{3)2
o | ok~ k) p+ (1) | T —p-k]
(2m)* K (p—k)?
_ oy b d'k [ 5z~ h-(-gr  20-2)0 —&lp- k) + (2p)’]
=g°Cyo / dx/ { A)2 + (kQ_A)3 )
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Chapter 26. Quamtum Yang-Mills theory

where A = —p?z(1 — ) in both integrals, and we shift k — k + zp to get the last line. Also,
we dropped the terms linear in k and used Eq. (B.2) of the book. Now notice that

/ ddk (p . I{I)Q :/ ddk pukuguupakﬂgaﬁ
(2m)" (k* — A)° (2m)" (K —A)
ddk kZQVBg,uI/ga,Bpupa 26,9
2m)?  (K* = A)° (26.2)

/ kP
(2m)? (K* = A)*

Thus, in dimensional regularization,

b o sab dd [ Ak L l(x=1)—1 =8z 201 —2)(1-&EK +2%)
iMear = g Ca0" /0 dx/(Qw)dp [ +

(K> — A)? (K> — A)?

(26.3)
To extract the counterterm, we only need the divergent part:

M“ﬁf:gQOAéabﬁ/ldx 1 2_§F g @ P (m—1)+1(1—3x)(1—§) + finite
se 4 )d/2 0 A 9 2

(4w
o (<) 2 (1 La—o) L fnit
= —1—=(1- - nite.
4 167> b 2 3
(26.4)
In MS scheme, adding the counterterm contribution
iMPE = Y B = i, (26.5)
shall just remove the divergent part. Therefore, one must choose
5= (Ve +lacoc (26.6)
3¢ — c 1677'2 A 92 Al :

which is exactly Eq. (26.84) of the book as expected.
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Gluon scattering and the
spinor-helicity formalism

27.1

e I believe there is a typo in the question: by definition, the reference momen-
tum 7" must not be aligned with p*, so the reference momentum can not be
(1,0,0,1). I will try »* = (1,0,0, —1) instead.

By Eq. (27.12) of the book, given that p = (F,0,0, F) and r* = (1,0,0,—1), we have

P = <8 2%) , (27.1)
and
P8 = ((2) 8) . (27.2)
From Eq. (27.15) of the book, these are outer product of spinors:
Pt = A0, (27.3)
and . :
PP = NONP, (27.4)
We can infer that
AY = (ai) , Ay = (0 b,,), with a, b, =2E, (27.5)
and
= (“3) X = (b, 0), with a, b, =2 (27.6)

For real momenta, where A% = (S\d‘)T, we have a,, = b, = V2F and a, =0, = V2.
Thus,

p) =X, = (\/(2)_]5) and p] = Xy = (0 V2E), (27.7)
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Chapter 27. Gluon scattering and the spinor-helicity formalism

and
Py =M = ({f) =X = (V2 0). (27.8)
By using Eq. (27.20) of the book with zero phase, we also have
[pr] = (rp) = 2VE. (27.9)
Plugging these into Eq. (27.29) of the book, we get
- )] LA A U
G = Vet = (75 o). (27.10)
. ] V2
i )P 0 2
&) ()] = \/5@ = (0 : ) : (27.11)

For each p, we multiply the uth Pauli matrix with the polarization bispinor and taking

the trace:
1 , 1

_— 'LL . oo —_
20-04046:‘: \/5
Notice that Eq. (27.29) is only applicable for lightlike polarization, which is not the case.

However, one can observe that € = \/Li(e’fr + ¢"). Thus, the reference momentum r* can
still be taken as " = (1,0,0, —1).

ey =

(0,1, 44, 0). (27.12)
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Spontaneous symmetry breaking

28.1
Plugging ¢(x) = % + ¢(z) = v+ ¢(z) back into the Lagrangian Eq. (28.10) of the book,
L= (8#&)(3#55) + m? [U2 +¢*p+v (qg* + é)]
o _ ~ o ~ ~ o ~ (28.1)
o (F9) e (54 8) v 2dda et (54 6) 20 (579) (5 46).

Collecting the bilinear term & and é* in potential to write out the mass square matrix leads to

A2 m2 | A2 | A2 2
M2 = 1Y —ptav ) _om (28.2)
m? | A2 | A2 A2 2 \1 1) '
—T‘i‘zv +ZU ZU

where we have used A\v? = 2m?. Solving for the two eigenvalues m: and mj by noticing that

mim; = det(M?) = 0, (28.3)
and
mi +m3 = Tr(M) = m?. (28.4)
The two eigenvalues are thus
mi =0, mi=m?, (28.5)
or
my =0, my =m. (28.6)

Indeed, the mass matrix has a zero eigenvalue. Solving for the two eigenvectors 51 and q;?:

- 1 - '
=3 G) , o = —% (_11) : (28.7)

Therefore, the linear combination of the complex field ¢ that diagonalize the mass matrix are
just ¢, = % ((5 + qg*) and ¢, = —% <gz~5 — (]B*), which are just the real and imaginary degree of
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Chapter 28. Spontaneous symmetry breaking

freedom of ¢, respectively. Writing ¢ = ¢, + iy or ¢(x) = v+ ¢ () + ichy(x) and plugging this
back to Eq. (28.10) of the book, we can get

A
L= (0u61)" + (0u02)” +m* [(v+ 60)" + 6] = T [(v+ 81)" + 62+ 2(v + 61)° 03]
= (au¢1)2 + (auqbQ)Q + m2U2 + 2m2v¢1 + m2¢% + m2¢g
—iv4—é¢4—/\v¢3—)\v3¢ —§v2¢2—é¢4—iv2¢2—é¢2¢2—)\v¢ ¢2
4 4 1 1 1 9 1 4 2 92 2 2 1%2 172

4
= (D60 + (B0 + T — 22} — 26t~ VDt — 2k — 266k — my/ Dok
(28.8)

To see how this is related to Eq. (28.12), one need to note that this ¢(z) is expanding around
a purely real VEV (unlike Eq. (28.11) of the book). The two descriptions thus should coincide

w(z)

at where o= 0 such that one can associate
v 6 (z) = (v + %J(x)) cos %”) — vt %a(m), or 6y (x) = %0(1‘), (28.9)
and
() = (v + %a(x)) sin Wz(vi) = 0. (28.10)

The only non-vanishing term involving ¢, in Eq. (28.8) is

(9,69)* = (v + %a(x))Q Fiz(a,ﬂ)? cos’ %3) - <v + ia(x)>2 Lo (es11)

Plugging these back into Eq. (28.8)),
1 ’1 m’ 1 1
L= —(Qp)z + (v + EO‘(]J)) F—E(Qﬂr)z — (_T +mPo® + 5\/Xm03 + 1—6)\04) . (28.12)

which is exactly Eq. (28.12) of the book.
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Weak interaction

29.1

At tree-level, there is only one s-channel diagram mediating by a Z boson for this process. From
Eq. (29.40)-(29.44) of textbook, the Z couples to the fermion currents Jf as L = 5 Z#Jf,
where

z_ 1 3 2, 7EM
J, = cos@w(J“ sin” 0,,.J,,)
1 : — : —
= (10 - Quin,) dunn — Qi 0,0
“ s 5 (29.1)
S— [(TS—QSiDQQM)l/_J’YM (1 ! )¢—Qsin29w1/_wu (1+7 )¢]
cos b, 2 2
_ 1 1 3 s 2 Tl _1 3 7 D
= ool [2 (T° = 2Qsin"6,) ¥7"¢ = ST 0"y "v

We have separated the current into a vector part and an axial-vector part by inserting the s

matrices using Py, p = 13’;75.
Since the electron carries an electric charge () = —1, and the left-handed electron also
carries a weak isospin T° = —% while the right-handed is weak isospin neutral, we thus have
1 1 1
JMZ = — N {(—Z + sin? 9w> evl'e + Zéy”f’e] : (29.2)
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We then calculate the amplitude under unitary gauge

e *('m 1 1 ! (gw B P”g")

%74 .2 _ — 5 m vo ko
(e 2 ) o o = ok z
(sian cos@w> (COS@w> [( g o w> erer ey 6} s —my gc

2
) e myy 1 .9 _ 1,5 1 .
_ 2 0 ) evie + —ent 3
Z(Sin9w6089w> (cos@w> [( g o w) et 761 S—m%E
(20.3)

Notice the p“é’y part in the propagator, when coupling with the vector current part does not
mz
contribute since for the on-shell initial electrons, we can use the Dirac equation and p* = pl' +ph

to see

o(p )Y u(p)p"p” = o(p1) (P, + p,)ulp2)p” = 0(p1)(=me + me)u(ps)p” = 0. (29.4)

However, for the axial-vector current, this does not vanish because

U(p)V" Y ulpe)p"” = (p1) (B, + P,)7 ulp2)p”

()P, u(pa)p” — 0(p1 )y pyu(pe)p”
= 0(p1)(=m, — me)u(py)p”
= —2m,V(p1)u(p2)p”,

)
) (29.5)

which is generally nonzero unless m, = 0. This is in fact related to chiral anomalyﬂ. Another
way to see the non-vanishing nature of this term is by Goldstone boson equivalence theorem.

The p:f;” part in the propagator comes from the longitudinal polarization of the massive Z boson,
whose contribution is equivalent to a Goldstone gauge boson and the pseudoscalar current is
exactly one would expect from the interaction with a Goldstone boson. However, as for LEP,
s = (206 GeV)? > m? ~ (0.511 MeV)?, we can safely set m, = 0 to do above calculation and
ignore the contribution of this term, which is why we have simplified the propagator in the last

'In fact, this is anomalous at quantum level even for massless fermions, as will be explored in the next
chapter.
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line of Eq. (29.3). The amplitude square is then

1 1 e 4 m 2 1 )
2 _ - W
45;%’/\4\ a 4(sin9wc089w> (cosﬁw) (S—m%)
Loy Vol o o] 4 L muly iy s
O BTl B e o BT LR

L 4 my (29.6)
- — 0, +2 7
(4 S Oy + 2sin w) (sm@ cos 0, > ( 2) 1°P2)
L sin” 0, + sin* 6,, mz
8§ 2 sin 6, COSQ s —my

ECMmZ
U4(ECM - MZ)2

= (2 — 8sin’*6,, + 16sin*0,,)

where we used the trick Eq. (13.112) of the textbook that in any physical matrix element,
one can do the replacement Zpols leL*el — —g, for external polarization to get the first

line. Also notice that there can not be any current and axial-current cross product contri-
bution in the trace terms because any such terms have either Tr[odd # of y-matrices] = 0 or

Tr[75 x odd # of 7] = —Tr[odd # of 7" x 75} = —Trh5 x odd # of 4] = 0. Then, we
used v = 2mW:m b — 2mz Singw c0sbu 1 get, the final answer.
In CM frame, we have
o S E
pi = Pi| = |p2| = % (29.7)

To solve for the p; = |pj,| = [p’z], we used the relations

p; = Ej —mj = E} —m3, (29.8)
and
Eom = Ej + By, (29.9)
to get
B2 —m2 2
B, = oMMz 1 T (29.10)
2Ecnm
or

A - \/ Fu i o). (29.11)
V ECM 4By Eéu '
From Eq. (5.32 ) of textbook, we have
do 1 Pf
(d_Q)c o1
B (2 — 8sin”6,, + 16sin’ Hw) ms Py
T GanNEL, - M

(29.12)

Integrating over solid angle and plugging the values Eqy = 206 GeV, sin® 6, = 0.223, v =
247 GeV, m, = 91.7816 GeV, and m; = 100 GeV (of course, the actual measured value of
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Chapter 29. Weak interaction

the mass of Higgs boson is about 125 GeV, but if we take the actual value, the LEP Eqy =
206 GeV < my + my, is not enough to produce this process resonantly) leads us to the cross
section

(2 — 8sin®0,, + 16sin’ 0,,) m% p;

o= L 21.0192 x 1072 (GeV) ™2 2 0.3969 pb. 29.13
16mv* (Egy — M3)? D ( ) P ( )

As a sanity check, we used MadGraph5 to generate this process and get a cross section of 0.4263
pb [7], which is not bad.

29.2
(a) Using Eq. (29.40) from textbook, we can get the Z-transmitted diagram under unitary
gauge as
. 2 I U p“p”)
ZMZ _ < e ) JZee ! (g 2””22 JZQ‘Z
sin 6, 2 g 5=y (29.14)
. € Zee 1 Z
— J J q9q
Z(sin%) H s—mZZ B

where JMZ is given by Eq. , and we again ignore the p;g” part in the propagator
because the mass of all flavors of quarks except for the top’s are much smaller than my
and we will ignore the quark mass (as well as electron mass) from here on, while the top is
too heavy to hadronize before it decays and thus, is not related to this question. For clear
notation purpose, I shall define a ”Z charge” (), for each particle coupling to the Z boson
as

Q. =T°—Qsin’b,,. (29.15)

Notice that the left-handed and right-handed of the same flavor particle do not share the
same weak charge, unlike the electric charge (). Then, we can write the Z-boson transmitted
current as

']Z ! [(QzR + QZL)"EPY”ID + (QzR - QZL)&PYHVBw] ; (2916)

" 2 cos B,

For the ~-transmitted diagram under Feynman gauge, we have
M, — i )L o 29.17
iM., =ie"J, S (29.17)
where J is given by Eq. (29.44) of textbook:
Il = QU (29.18)
For later convenience, let’s write out the some trace expression and their products:
v 5 v_5 v v v
Tr [zﬁﬂ“ﬁﬂ } =Tr [zﬁﬂ“v Py ] = 4(pi'vf — pi g™ + ipy), (29.19)
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Chapter 29. Weak interaction

where p;; = p; - p;, and

Tr [pﬂ“f@ﬂ”} — Ty [pﬂ“pﬂ”ﬂ — —dig Py’ (29.20)

Then,
Tr [?ﬂ”}"ﬂ“] Tr [¢37MP47V} = 32(p13pas + Prapas) = 8(° + u?), (29.21)

and

Te[p "o T p o] = —16(E ) )

vo vpdy é
= 16(e" "7 )p{ iy Pl

= 32(g°"¢™ — g°0 ") pS papp}
= 32(p13P2s — P14P23)
= 8(152 - uz).

(29.22)

All other trace products can either be converted to the forms above or vanish. This can

be seen from the fact that Eq. (29.19)) is symmetric w.r.t. p <> v while Eq. (29.20) is
anti-symmetric w.r.t. p <> v so their product must vanish. Then, the spin sum of currents

can be written out as

Z(Jf )T = (2 Cols 9w>2 {(Qza +Q.)° T [pn“pﬂ”] +(Q.r — Q) Tr [pﬂ“vf’]/ﬁﬂ”ﬂ

+(Qr— Q%) Tr [;;ﬁﬂ“pﬂ”ﬂ +(Qr— Q%) Tr [zﬁﬂ“vspﬂ”} }

2
= (m) {(QzR +Q%)Tr [Zﬁﬂu}ﬁﬂy} +(Q%— Q%) Tr [¢i7“¢j7”75] }
(29.23)
S UNENT = QT[] (29.24)
and
Z(Jf)(JJ)T = Z:(Jl)(JVZ)T
— (5o ) @t Q) e[y ] + Qe — Qo) T[]
=\ 2cost, R 2L PP R 2L PP ¢
(29.25)
Also, notice that in the massless limit in the CM frame,
t= —2pps = —2E%(1 — cos ) = —%(1 — cosf), (29.26)
and 5
uw=—2p;, = —2E*(1 4 cosh) = —5(1 + cos ), (29.27)
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Chapter 29. Weak interaction

where F = /s/2 is the energy of individual particle, and 6 is the scattering angle between
the incoming particle and the outgoing particle. Then,

2
242 = %(1 + cos6), (29.28)

and

2

t? —u® = —s°cos f. (29.29)

Using results above, the Z contribution along is

o =5 (i) () TS

spins

3 e 4 1 2
~ 2 \sinf, cos b, s —my

X {(QzR,e + QgL,e)(QgR,q + QiL,q)(tz + u2) + (QﬁR,e - QzL,e)(QﬁR,q - QiL,q)(tz - ’LL2)}

3 e 4 s 2
~ 4 \sinf,, cos b, s —my

X {(QiR,e + QzL,e)(QzR,q + QgL,q)(l + cos” 0) — 2(Q§R,e - QzL,e)(QiR,q - Q,?L,q) COS 9},
(29.30)

where a factor of 3 comes from the color sum of quarks. Similarly, the v contribution along

4

— Z M, P = =S (¢ +u*) = 3Q2Q%e" (1 + cos” 0), (29.31)

spms

and the interference between the two diagrams is

4
%Z( MM+ MM ) = 5 222 (JZ) T3y (J790) (30T

4 5in? 0, s(

spins

3 Q.Qf" 2

T 92 2 2
2sin” 6, cos™ 0, s(s —m7y)

X {(QzR,e + QzL,e)(QzR,q + QzL,q)(t2 + u2) + (QzR,e - QzL,e)(QzR,q - QzL,q)(t2 - UQ)}

Qque4 25>

sin® 6, cos® 0, s(s —m%)

X {(QzR,e + QzL,e)(QzR,q + QzL,q)(l + COS2 6) - 2(QzR,e - QzL,e)(QzR,q - QzL,q) CoS 9}
(29.32)

_3
4
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Particle | @ Q.1 Q.r
e -1 —% + sin 6, sin” 6,
u, ¢ +§ % — %sm 0., —% sin” 6,
d, s, b | =% | -1 +1isin’0, | Lsin’g,

Table 29.1: Electric charge and ”Z charge” for the electron and quarks.

electric charge Q and ”Z charge” Q. = T° — Qsin?6,, for each fermions relevant to this

problem is listed in Table [29.1}

Before calculating the cross sections, one should notice that since Z boson is heavy and
unstable, one should really really replace the usual Z propagator above by the Breit-Wigner
modified propagator from Eq. (24.50) of textbook (otherwise, the plot of cross section will
also be divergent at s = mZZ):

iG(s) = ! (29.33)

2 .
s—my+imyzl'y

Now we know that the differential cross section is given by

do 1 9
(d(cos 9))01\/{ B 327r3‘M| (29-34)

The cross sections are

2

S 1

4
647r sin 0, COSH )

O’Z(€+€ — qq)

2 .
s—myz+imzly,

4 zR e + QzL e)(QzR,q + QEL,q) - 3<Q3R,E - QzL,e)<QzR,q - QEL,(])}

S 1

i
= 64r <sm9 cos 0 )4 (s —m%)? + (myly,)?

QzR eQzR ,q + QZL eQzL q) + 7(Q2R eQzL ,q + QzL eQzR q) }

(29.35)
2 4
o, (e"e” = Gq) = 4;1:; 7 (29.36)
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and H
1 1

+
2, . 2
s—my+imyl,  s—my —imyly,

X {4(QZR,€ + QzL,e)(QzR,q + QzL,q) - S(QZR,e - QzL,e)(QzR,q - QzL,q)}

1 Qqe4
647 sin® 6, cos® 6,

Uinterfere<€+e_ — QQ) =

1 Qqe’ s —my

327 sin? 0,, cos® O, (s —m%)® + (myL',)?

X {(QzR,eQzR,q + QzL,eQzL,q) + 7(@2R,eQzL,q + QzL,eQzR,q)}
(29.37)

Then, the total cross section is

Utot(e+6_ — Q_Q> = Z (UZ + O + Uinterfere) : (2938)
q

The sum is over the quark flavors listed in Table [29.1] Since the Z-boson and the photon
does not mix off-diagonal generations, this sum if flavor diagonal.

(b) At NLO, the diagram involves the real emission of a gluon in the final state and a vertex
correction involving the outgoing quarks and a virtual gluon. One can in principle follows
the procedures of Chapter 20.A of textbook, and notice that the correction on a Z diagram
can be seen essentially as a photon diagram, but just with proper replacement of e —

electric charge Q) — @, Qr of which left-handed and right-handed particles just

e
siné,, cos@,,’
2%

couple with the Z by a different charge, and the propagator —i% — —i—L—. However,

the QCD corrections are the same for left- or right-handed quarks since QpCD is non-chiral
and the calculations for the FSR and vertex correction diagrams have nothing to do with
the propagator replacement. Therefore, one just expects the same results of what’s already
calculated in Chapter 26.3 of textbook with proper replacements of coupling strength and
charges mentioned above. The same is also true for the interference terms because the
corrections apply in the same way for the Z diagram and the photon diagram.

Therefore, at NLO, we simply expects

3
onLo(ete™ = qq) = oy (1 + 4045 CF) =0y <1 + %> , (29.39)
7r T

where oy(e”e” — gq) is given by Eq. (29.38).

(c) Using the values m, = 91.7816 GeV, I', = 2.4952 GeV, e = 0.303, and «,/7m = 0.035,
sin?f, = 0.223, as well as charges given in Table we plotted the cross sections at
NLO in Fig. [29.1] We also plotted the effect of interference term in Fig. [29.2] From
the figures, the interference can either be ignored when either a) s < m, where photon
diagram dominates or b) s ~ m  where Z diagram dominates.

*Technically, Ointerfere(€ 7€~ — Gq) is of course not a cross section since it could run to negative value. See
Fig. [29.2] Forgive me to use sloppy notations here.
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Cross Sections for et + e~ — hadrons

10° g 1 . . 3
10° ¢
‘ ] y-mediated
g 1000; ; Z-mediated
© - 1 e Total (no interference)
100 £ 4 ====- Total
10 TR L L Ll PR P 1 P Loy L1
0 25 50 75 100 125 150 175 200
Vs (GeV)
Fig. 29.1: Cross sections as a function of center-of-mass energy /s.
Cross Sections for e + ¢~ — hadrons
e
600 [ ]
400 ]
200 | ]
/'E k
G 0
S : = Interference term
-200 ]
-400 ]
-600 ]
C1 L L L L 1 L n n n 1 L n n n 1 n n L L 1
0 50 100 150 200

Vs (GeV)

Fig. 29.2: The amount of interference as a function of center-of-mass energy /s.
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Anomalies
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Chapter 31

Precision tests of the Standard Model

31.1

The relevant Lagrangian of the 4-Fermi theory is given by Eq. (23.40) and Eq. (29.72) of the

textbook:
4G R

Lyr = _W

We shall use p; to denote the 4-momentum of the incoming p—, psy, ps, py to denote the 4-

momentum of the outgoing 7., v, and e, respectively. Then, the amplitude is given by

2Zuu’.)/MPLwy&e’yltPque + h.c.. (311)

4G
iM = —i—Z [a37" Prus] [agy" Pros) | (31.2)

V2

where we used shorthands u; = u(p;) and v; = v(p;). Treating the neutrinos as massless but
still keep the electron as massive, we can get the amplitude square after spin sum as

Z IM[* = 8G% Tr [(]”1 + mu)VNPLﬁ?ﬂVPL} Tr [(Zﬁ + me)’YuPLpQ'YVPL}
spins
= 8G5% Tr [plfy“p3fy”PL] Tr [%’Y“?Q’YVPL}

= 32G% [(p’fpg +piph — 9" pis) — i pips } [(pﬁfpé + piph — ¢ pas) + z’g“”é”pgpi]

= 32G% [2p14D23 + 2D19D34 + 2(P12P34 — P14P23)]

= 64G%p12p34a
(31.3)

where we used the shorthand p;; = p;-p;, and also the facts {'y” , 75} = (0 and the anti-symmetric
property of the Levi-Civita tensor.

Next, if we focus on the CM frame of the decayed muon, we shall get p; = (m,,0), py =
(E,py), of which E' = |p5|, and p; = py + p3 + ps. Then,

P12 = mp,Ea (314)

2 2
my, —mg —2m,E
2 Y

(1 —P2)2 = (ps +P4)2 = P34 = (31.5)
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Chapter 31. Precision tests of the Standard Model

such that
IM? = 32G%(m. — m? — 2m,E)m, . (31.6)

Notice that if we ignore the electron mass, we get the amplitude square given in problem 5.3

of the textbook.
We can use the 3-body decay phase space integral Eq. (20.42) of the textbook (derived in

Problem ([20.1))):
0 1-8
dll — d 31.7
/ LIPS — 128 3 951/1 - ( )

, B — r. The amplitude square,

with proper replacement Q — m,,, v, = 2%, Ty =
w my,

expressed with these dimensionless variables, becomes
IM? = 16G7m, (1 — 7 — xy);. (31.8)

Using the decay rate formula of Eq. (5.24) from the textbook and focusing on the rest frame
of the decayed muon,

=

5 1—7r 1— 1—Tm1

=Gy #3 dry[(1—r— Il)ml]/ dxy
0 e (31.9)

_ 2 mi 1_de x%(l—r—xl)Q
F167T3 0 ! 1—$1

= (G2 mug (1—87“—1—87’3—7’4—127“211&7’).
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Quantum chromodynamics and the
parton model

32.1

By definition,

Notice
F(¢?) = /d?’xei‘?'f‘/(x)
0 1
= 27?/ rzdr/ d(cos 0)e' "V ()
0 1
o0 1 4 ,
— 2 2d - wgr __—iqr
7T/0 r Tiqr (e e )V(x)
o 1
= 47?/ r2dr— sin(gr)V (x)
0

qr

4 20r— — Z(gr) -
7r/0 r drqr {qr 6(qr) + } V(z)

47r/000 r2dr {1 - é(qT)Q e } V(a),

Now, we can observe that,

dF(q° dr [
d(g ) = F/ r p(x)dr
q =0 0
1 3.2
=5 /d xrop(x)
L, 2

2 27
1]— — 4
0.71 GeV?
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Chapter 32. Quantum chromodynamics and the parton model

the proton’s mean charge radius is

U101 I
o) = 3 | T 07 Gev?
q 2_, 0.71 GeV

q =

~ 16.9 GeV ™2 = 16.9 x 3.804 x 107 m? = 0.658 fm?,

(32.5)

o™ =/ (r2) ~ 0.81 fm. (32.6)

or taking the square root,

32.2

The parton momentum can be viewed as the sum of the average momentum of each constituent.
Also, since the PDFs are interpreted as classical probabilities, we have

P! = Z@?) = Z/O dépl f;(€) = Z/O dEP e, f,(€), (32.7)

where we used p} = {P". Eliminating P* from both sides, we arrived at

Z/O dgg; f5(6)] = 1. (32.8)

32.3

As a distribution, the Eq. (32.38) can be defined through
oot ) @ ) )" oyt = 2)
/ e - 10, [ = [t - ) .

€ 1—2z ! n! 1—2z
(32.9)
Let x = 1 — 2, and notice that € above is used to regulate the IR divergence, and thus ¢ < 0,

the Eq. (32.118) of the textbook can thus be written as

/0 dz(1—2)7"7f(2) = /0 dz(1—2)7"7°f(1) + /0 dz(1—2)""[f(2) = f(1)].  (32.10)

The first term is evaluated to be

/ (1 2 () = EIEER f(l)]l _ I, )

where we used the fact that € < 0. The second term is

/0 dz(1—2) "5 [f(z) = f(1)] =

l—ze~ n!
- [(a:LE= 10 “M;(‘nﬁ)" [ st - sy,
) (32.12)
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Thus, we derived the expansion of Eq. (32.38) of the textbook:

1 __%(5(1_2” 1 _8[ln(1—z)]++i(—e)”llnn(l—z)}+' (32.13)

(1 —2)'*e [1—z], 1—=2 n! 1—=2

n=2
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Appendix A

Conventions

Al

(a) Since the action S must be dimensionless, the Lagrangian density must carry mass dimen-
sion [£] = d. Given that [0,] = 1 (cf. Eq. (A.4) of the textbook), we proceed to determine
the dimensions of the fields and couplings.

From the term —iF?  we have

1t
2 x [F,] = [£]
2x(1+[A)])=d
d
A =51 (A1)
From the term —¢* (¢, we have
2 % [¢] +2 = [£]
2x[p]+2=d
d
6= 21 (A2)

M=2—g- (A.3)
Finally, from the term \¢®, we have
[A] + 3 x [¢] = [£]
[M+3x<g—1>:d
[M:3—g. (A.4)



Appendix A. Conventions

(b) To ensure that the electromagnetic coupling g is renormalizable, we require from Eq. (A.3)):
d

O:[g]:2—§:>d:4. (A.5)

Similarly, for the ¢* scalar self-interaction coupling A to be renormalizable, Eq. (A.4)) yields:

0—[A]—3—g:>d—6. (A.6)
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Appendix B

Regularization

B.1

Starting with

/ d*k 1 (B.1)
(2m)* (k* — A 4 ie)™’ '

where A < 0. Now the integral still have poles at ky = V k2 + A —ie and kg = — k2 + A+ie.
If |k*| > |Al, the poles will then just on the same quadrants of the k, complex plane as the

case if A > 0. Thus, let’s assume |F?| < |A|.

/ d4k4 2 ! . n:/ d4k4 2 —’21 . : (B2)
(2m)" (K — A + ie) (27m)" (kg + (=k° — A +ie))"

The poles are now at kg = i( K — A+ie) = —e+iV —k*— Aand ky = i(— —k - A—ie) =
e—ivV —k> — A. Since ¢ > 0 and V —k> — A > 0, the poles are still in the top-left and bottom-
right quadrants of the k; complex plane, for which the integral over the figure-eight contour
still vanishes and the conclusion that the integral over the real and the imaginary axis are equal
and opposite still holds.
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