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Part I

Field theory

1



Chapter 1

Microscopic Theory of Radiation

This chapter does not include any problems.

2



Chapter 2

Lorentz invariance and second
quantization

2.1

• 0th order:

For v = 0, the transformations are simply

x→ x0, (2.1)

t→ t0. (2.2)

It is trivially true that t2 − x2 ≡ t20 − x20 is preserved.

• 1st order:

At O
(
v1
)
order, we start from x → x0 + δx1 and t → t0 + δt1, where we already know

that δx1 = vt0. By assumption, δt1 is of order O
(
v1
)
. Since the transformation must

preserve t2 − x2 ≡ t20 − x20, we obtain

t2 − x2 → t20 + 2t0δt1 − x20 − 2vx0t0 ≡ t20 − x20

=⇒ δt1 =
2vx0t0
2t0

= vx0, (2.3)

where terms of order O
(
v2
)
or higher are neglected.

• 2nd order:

Proceeding to O
(
v2
)
, we set

x→ x0 + vt0 + δx2, (2.4)

t→ t0 + vx0 + δt2, (2.5)

where δx2 and δt2 are of order O
(
v2
)
. Substituting into the invariant quantity,

t2 − x2 → t20 + v2x20 + 2vx0t0 + 2t0δt2 − x20 − v2t20 − 2vx0t0 − 2x0δx2 ≡ t20 − x20

=⇒ 2(x0δx2 − t0δt2) = v2(x20 − t20), (2.6)
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Chapter 2. Lorentz invariance and second quantization

where terms of order O
(
v3
)
or higher are neglected. As we assume δx2 and δt2 are both

linear in x0 and t0, and of order O
(
v2
)
, the only consistent solution is

δx2 =
1

2
v2x0, (2.7)

δt2 =
1

2
v2t0. (2.8)

• The expansion of 1√
1−v2

= (1− v2)−
1
2 follows as

1 +
1

2
v2 +

3

8
v4 + . . . ,

leading to the approximations valid for v ≪ 1

x→ x+ vt√
1− v2

= x+ vt+
1

2
v2x+ . . . (2.9)

t→ t+ vx√
1− v2

= t+ vx+
1

2
v2t+ . . . . (2.10)

These results are consistent with the perturbation expansions derived above, matching
order by order in powers of v.

2.2

(a) At the CM frame (which, for the LHC, also coincides with the lab frame), each of the two
colliding protons has an energy of Ep = 7 TeV. Given that mp ≈ 0.938 GeV ≪ Ep, we find

γmp = Ep

γ =
Ep
mp

1

1− v2
=
E2
p

m2
p

v =

√
1−

m2
p

E2
p

≈ 1−
m2
p

2E2
p

. (2.11)

Clearly, the quantity
m

2
p

2E
2
p

represents the deviation of the proton’s speed from the speed of

light:

m2
p

2E2
p

≈ 8.98× 10−9 c ≈ 2.69 m s−1 = 9.68 kmh−1 , (2.12)

where I include a factor of the speed of light c = 299792458 m s−1 to restore the correct
dimension of velocity.
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Chapter 2. Lorentz invariance and second quantization

(b) Consider the rest frame of proton 1. The lab frame moves with velocity vlab = v relative
to proton 1’s rest frame, where v is given by Eq. (2.11). Proton 2, meanwhile, moves with
speed v2,lab = v relative to the lab frame.

Applying the collinear velocity addition formula,

vrel =
vlab + v2,lab
1 + vlabv2,lab

=
2v

1 + v2
≈

2− m
2
p

E
2
p

1 + 1− m
2
p

E
2
p

+O

(
m4
p

E4
p

)
≈ 1 = c. (2.13)

Thus, one proton is moving at nearly the speed of light c relative to the other.

2.3

(a) From Eq. (1.6) of the textbook, we know that the total energy of CMB photons in the
universe is given by

ECMB, tot =
V

π2

∫ ∞

0

E3

eβE − 1
dE. (2.14)

On the other hand, the total energy is also related to the number density by

ECMB, tot ≡
∫ ∞

0

n(E)EdE, (2.15)

where n(E) is the number density of photons as a function of energy. The total number of
CMB photons in the universe is given by

NCMB, tot ≡
∫ ∞

0

n(E)dE. (2.16)

Comparing Eq. (2.14) with Eq. (2.15), we conclude

NCMB, tot ≡
∫ ∞

0

n(E)dE =
V

π2

∫ ∞

0

E2

eβE − 1
dE. (2.17)

We can then calculate the average energy ⟨ECMB⟩ of CMB photons as

⟨ECMB⟩ =
ECMB, tot

NCMB, tot

≡

∫∞
0

E
3

e
βE−1

dE∫∞
0

E
2

e
βE−1

dE

=
1

β

∫∞
0

ε
3

e
ε−1

dε∫∞
0

ε
2

e
ε−1

dε

=
1

β

Γ(4)ζ(4)

Γ(3)ζ(3)

≈ 3kBTCMB × π4

90
× 1

1.202

= 6.35× 10−4 eV ,

(2.18)

5



Chapter 2. Lorentz invariance and second quantization

where I redefine the variable ε ≡ βE in the second line and use the property of the Riemann
zeta function,

ζ(s) =
1

Γ(s)

∫ ∞

0

xs−1

ex − 1
dx.

Also, I used ζ(4) = π
4

90
, and ζ(3) ≈ 1.202. In the following, I shall denote ⟨ECMB⟩ simply

as ECMB.

(b) To find the threshold energy for pion production, we consider the lab frame as where the
initial proton and the initial photon are collinear and head-on. We set

pp,i = (Ep, p⃗p), (2.19)

pγ = (ECMB, p⃗γ), (2.20)

where |p⃗γ| = ECMB. In the CM frame, the final pion and proton are at rest:

pp,f = (mp, 0), (2.21)

pπ = (mπ, 0). (2.22)

Note that the four-momentum in the initial and final states above are not measured in the
same frame. However, the squared sum of four-momenta, i.e., the invariant mass squared,
is a Lorentz scalar, so we can evaluate it in either frame. Thus,

(pp,i + pγ)
2 = (pp,f + pπ)

2

m2
p + 2

(
ECMBEp − |p⃗p||p⃗γ| cos θ

)
= m2

p +m2
π + 2mpmπ,

m2
p + 2ECMB(Ep + |p⃗p|) = m2

p +m2
π + 2mpmπ,

(2.23)

where I have used the four-momentum conservation in the first line, the initial proton and
CMB photon collide head-on (cos θ = cos π = −1) and that |p⃗γ| = ECMB. Given that

mp ≈ 0.938 GeV and |p⃗p| =
√
E2
p −m2

p, the threshold energy is then derived by

Ep +
√
E2
p −m2

p =
m2
π + 2mpmπ

2ECMB

E2
p −m2

p = E2
p +

(
m2
π + 2mpmπ

2ECMB

)2

− 2Ep

(
m2
π + 2mpmπ

2ECMB

)

Ep =
m2
π + 2mpmπ

4ECMB

+
m2
pECMB

m2
π + 2mpmπ

≈ 1.07× 1011 GeV .

(2.24)

(c) The proton-pion system has an invariant mass of Minv = mp +mπ. In the lab frame, the
total energy of this system is Etot = Ep + ECMB due to energy conservation. To find the
relative velocity between the CM frame and the lab frame, we calculate the Lorentz factor
γ that relates the two frames as

γ =
Etot

Minv

=
Ep + ECMB

mp +mπ

. (2.25)
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Chapter 2. Lorentz invariance and second quantization

Since the outgoing proton is at rest in the CM frame, this is also the Lorentz factor of the
outgoing proton in the lab frame. Thus, in the lab frame, its energy is

Ep,f = γmp =
Ep + ECMB

mp +mπ

mp ≈ 9.35× 1010 GeV . (2.26)

2.4

Yes , the transformation Y is indeed a Lorentz transformation. It can be achieved by first
performing a spatial rotation of an angle θ = π around the y-axis, followed by the parity
transformation P :

(t, x, y, z)
Ry(π)−−−→ (t,−x, y,−z) P−→ (t, x,−y, z). (2.27)

Since the group product (Y = P ◦Ry(π)) is closed, Y is also an element of Lorentz group, i.e.,
a Lorentz transformation. Because it can be generated by other group generators, we do not
treat it as an independent discrete Lorentz transformation alongside P and T .

2.5

(a) The energy range of X-rays is approximately O(0.1)−O(100) keV, which is much greater
than the typical ionization energy of an electron in most crystals (i.e., O(1)−O(10) eV).
Therefore, the electron can essentially be treated as free.

(b) The initial electron is at rest, and we apply four-momentum conservation:

pe + pγ = p′e + p′γ

p′2e = (pe + pγ − p′γ)
2

m2
e = m2

e + 2pe · pγ − 2pe · p′γ − 2pγ · p′γ
0 = meEγ −meE

′
γ − EγE

′
γ(1− cos θ)

E ′
γ =

Eγ

1 +
Eγ

me
(1− cos θ)

f ′
γ =

fγ

1 +
hfγ

mec
2 (1− cos θ)

, (2.28)

where primes denote final-state variables, and θ is the scattering angle between the initial
and final photons. I also insert Planck’s constant h and the speed of light c in the final
form to restore the correct dimensions. The plot is shown in Fig. 2.1.

(c) From Eq. (2.28), as me → 0, f ′
γ → 0, except when θ = 0. At this angle, the photon’s

frequency—and consequently, its energy—remains unchanged, and no interaction occurs
between the photon and the electron. Note that a massless particle cannot be at rest in any
reference frame, meaning the previous derivation is not valid in this limit (technically, one
should really think the limit Eγ/me ≫ 1).

7



Chapter 2. Lorentz invariance and second quantization

Fig. 2.1: The y-axis represents the scattering frequency f ′, while the x-axis represents the
scattering angle θ. The initial photon energy is fixed as Eγ = 100 keV

(d) Classically (i.e., if the photon momenta is not quantized), the frequency of the outgoing
radiation is identical to that of the incoming radiation, and the distribution is simply a
constant line. This can be seen by taking the h→ 0 limit in Eq. (2.28). The classical
physical picture, which you might recall from your E&M class, is the incoming radiation
induces the electron to oscillate at the same frequency as the radiation. The oscillation of
the electron then releases away radiation at the same frequency. Hence, fγ = f ′

γ.

2.6

(a) ∫ ∞

−∞
dk0δ(k2 −m2)Θ(k0) =

∫ ∞

−∞
dk0δ((k0)2 − ω2

k)Θ(k0)

=

∫ ∞

−∞
dk0

δ(k0 − ωk) + δ(k0 + ωk)

2ωk
Θ(k0)

=

∫ ∞

0

dk0
δ(k0 − ωk)

2ωk

=
1

2ωk
,

(2.29)

where I used the identity δ(g(x)) =
∑

i
δ(x−xi)
|g′(xi)|

, in which i runs over all roots of the argument

8



Chapter 2. Lorentz invariance and second quantization

of the delta function g(x).

(b) Recall from Eq. (2.11) of the textbook, the Lorentz transformation Λ is defined by

ΛTgΛ = g. (2.30)

Taking the determinant of both sides,

det
(
ΛTηΛ

)
= det η

(det Λ)2 det η = det η

| detΛ| = 1, (2.31)

where I used det η = −1.

A coordinate transformation induces a change in the integration measure according to

dk0dk1 · · · dkn = | detJ |dk0
′
dk1

′
· · · dkn

′
, (2.32)

where J is the Jacobian of the transformation. Since a Lorentz transformation is itself a
coordinate transformation, the Lorentz transformation matrix Λ is nothing but the Jacobian
J . Hence,

d4k = | detΛ|d4k′ = d4k′ . (2.33)

Therefore, the measure d4k is trivially Lorentz invariant.

Side Remark: In a curved spacetimea, the metric g varies from point to point, and

no global Lorentz transformation Λ can satisfy ΛTgΛ = g′ universally. Nevertheless,
the Einstein equivalence principle guarantees the existence of a locally flat reference
frame at every point, where the laws of physics reduce to those of special relativity
(i.e. g′ → η). Hence, a generalization of Eq. (2.31) becomes

det
(
ΛTgΛ

)
= det η

(det Λ)2 det g = −1

| detΛ| =
√
− det g, , (2.34)

and the generalization of the Lorentz transformation of the differential measure be-
comes

d4k =
√

− det g d4k′. (2.35)

This is where the
√
− det g factor in the Einstein-Hilbert Lagrangian comes from (see

Eqs. (8.145), (8.146), and (22.26) of the textbook).

aThis is why I intentionally used the Minkowski metric notation η in Eq. (2.31) instead of the
general metric notation g as in the textbook.

(c) ∫
d3k

2ωk
=

∫
d3k

∫ ∞

−∞
dk0δ(k2 −m2)Θ(k0)

=

∫
d4kδ(k2 −m2)Θ(k0)

(2.36)

9



Chapter 2. Lorentz invariance and second quantization

by part (a). Now,

• The integral measure d4k is Lorentz invariant by part (b).

• The function δ(k2 −m2) is Lorentz invariant since its argument is a scalar.

• Also, the on-shell condition by the delta function defines a two-sheeted hyperboloid in
k-space, either k0 > 0 or k0 < 0. However, for a proper orthochronous Lorentz trans-
formation, it’s impossible to transform a point from one sheet to the other. Hence,

the sign of k0 is unambiguous and Θ(k0) is Lorentz invariant1.

As both the integral measure and the integrand are Lorentz invariant, the entire expression
is Lorentz invariant.

2.7

(a)

∂z(e
−za†aeza

†
) = −a†e−za

†
aeza

†
+ e−za

†
aa†eza

†
= e−za

†
(aa†− a†a)eza

†
= e−za

†[
a, a†

]
eza

†
= 1.

(2.37)

(b) Notice that when z = 0, e−za
†
aeza

†
= a. Using this boundary condition to integrate

Eq. (2.37), one can obtain

e−za
†
aeza

†
= z + a. (2.38)

Then,

a |z⟩ = aeza
†
|0⟩ = eza

†
e−za

†
aeza

†
|0⟩ = eza

†
(z + a) |0⟩ = zeza

†
|0⟩ = z |z⟩ . (2.39)

Thus, |z⟩ is an eigenstate of a with eigenvalue z .

(c)

⟨n| N̂ |z⟩ = ⟨n| a†a |z⟩
n ⟨n|z⟩ = z

√
n ⟨n− 1|z⟩

⟨n|z⟩ = z√
n
⟨n− 1|z⟩

cn =
z√
n
cn−1.

(2.40)

Also, the base case is

c0 ≡ ⟨0|z⟩ = ⟨0| eza
†
|0⟩ = ⟨0|

(
1 + za† +

1

2!
(za†)2 + · · ·

)
|0⟩ = 1. (2.41)

Then, by induction,

⟨n|z⟩ ≡ cn =
zn√
n!

. (2.42)

1Recall that when we say something is Lorentz invariant, we really mean it’s invariant under a proper
orthochronous Lorentz transformation.
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Chapter 2. Lorentz invariance and second quantization

(d) We will need the following relations:

⟨z|z⟩ =
∑
n

⟨z|n⟩ ⟨n|z⟩ =
∑
n

|cn|2 =
∑
n

|z|2n

n!
= e|z|

2

, (2.43)

⟨z| a |z⟩ = z ⟨z|z⟩ = ze|z|
2

, (2.44)

⟨z| a†a |z⟩ = |z|2 ⟨z|z⟩ = |z|2e|z|
2

, (2.45)

⟨z| aa† |z⟩ = ⟨z| (1 + a†a) |z⟩ = (1 + |z|2)e|z
2|, (2.46)

⟨z| a2 |z⟩ = z2e|z|
2

. (2.47)

Then,

⟨x⟩ = ⟨z|x |z⟩
⟨z|z⟩

=
1√
2mω

⟨z| (a+ a†) |z⟩
⟨z|z⟩

=
1√
2mω

(z + z∗), (2.48)

⟨x2⟩ = 1

2mω

⟨z| (aa+ a†a† + aa† + a†a) |z⟩
⟨z|z⟩

=
1

2mω
(z2 + z∗2 + 2|z|2 + 1), (2.49)

⟨p⟩ = ⟨z| p |z⟩
⟨z|z⟩

= i

√
mω

2

⟨z| (a† − a) |z⟩
⟨z|z⟩

= i

√
mω

2
(z∗ − z), (2.50)

⟨p2⟩ = −mω
2

⟨z| (aa+ a†a† − aa† − a†a) |z⟩
⟨z|z⟩

= −mω
2

(z2 + z∗2 − 2|z|2 − 1). (2.51)

Thus,

∆x2 = ⟨x2⟩ − ⟨x⟩2 = 1

2mω
, (2.52)

∆p2 = ⟨p2⟩ − ⟨p⟩2 = mω

2
. (2.53)

and therefore,

∆p∆x =

√
∆x2∆p2 =

1

2
. (2.54)

(e) Suppose there exists such an eigenstate |β⟩ ≡
∑

n bn |n⟩ of a
†, with a nontrivial eigenvalue

β ̸= 0. Then,

a† |β⟩ = β |β⟩ =
∑
n

βbn |n⟩ . (2.55)

We also have
a† |β⟩ =

∑
n

bn
√
n+ 1 |n+ 1⟩ =

∑
n

bn−1

√
n |n⟩ , (2.56)

where I have shifted the index in the last step.

Taking the difference of the two expressions Eq. (2.55) and Eq. (2.56), we obtain the
recursion relation

βbn −
√
nbn−1 = 0

bn = bn−1

√
n

β
= b0

√
n!

βn
, (2.57)
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Chapter 2. Lorentz invariance and second quantization

where the last step follows from induction. However, note that

0 = ⟨0| a† |β⟩ = βb0 =⇒ b0 = 0 (2.58)

Thus, all coefficients bn = 0, indicating an eigenstate of a† cannot exist.
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Chapter 3

Classical field theory

3.1

0 = δS =

∫
d4x

[
∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
δ(∂µϕ) +

∂L
∂(∂µ∂νϕ)

δ(∂ν∂µϕ) + . . .

]
=

∫
d4x

[
∂L
∂ϕ

− ∂µ

(
∂L

∂(∂µϕ)

)
+ ∂µ∂ν

(
∂L

∂(∂ν∂µϕ)

)
+ · · ·

]
δϕ

+

∫
d4x

[
∂µ

(
∂L

∂(∂µϕ)
δϕ

)
+ ∂µ

(
∂L

∂(∂µ∂νϕ)
δ(∂νϕ)

)
− ∂ν

(
∂µ

∂L
∂(∂µ∂νϕ)

δϕ

)
+ · · ·

]
=

∫
d4x

[
∂L
∂ϕ

− ∂µ

(
∂L

∂(∂µϕ)

)
+ ∂µ∂ν

(
∂L

∂(∂ν∂µϕ)

)
+ · · ·

]
δϕ

+

∫
d4x∂µ

[(
∂L

∂(∂µϕ)
δϕ

)
+ 2

(
∂L

∂(∂µ∂νϕ)
δ(∂νϕ)

)
− ∂ν

(
∂L

∂(∂µ∂νϕ)
δϕ

)
+ · · ·

]
.

(3.1)

The second line is a total derivative and vanishes if one assumes that the fields and their
derivatives vanish at spatial and temporal infinity. The first first line must vanish for arbitrary
variations δϕ, which leads to the generalized Euler–Lagrange equation for a Lagrangian of the
form L[ϕ, ∂µϕ, ∂ν∂µϕ, · · · ]

n∑
i=0

∑
µ1≤···≤µi

(−1)i∂µ1 · · · ∂µi

(
∂L

∂ϕ,µ1···µi

)
= 0 , (3.2)

where I have adopted the notation commonly used in General Relativity context: ϕ,µ1···µi ≡
∂µ1 · · · ∂µiϕ.

3.2

(a) Lorentz symmetry implies that replacing the scalar field ϕ(xµ) with ϕ((Λ−1)µνx
ν)—its form

under a Lorentz-transformed frame—leaves physical observables (like the Lagrangian, the
equations of motion, etc) invariant. For a proper infinitesimal Lorentz transformation, we
can write

Λµν = δµν + ωµν , (3.3)

13



Chapter 3. Classical field theory

where ωµν is antisymmetric (see Eq. (10.13) of the textbook for example). To prove this, we

can start from the defining condition for Lorentz transformations (cf. Eq. (2.41)): ΛTgΛ =
g. Since the transformation must reduce to the identity for infinitesimal ω, we can expand

ΛµαgµνΛ
ν
β = gαβ

(δµα + ωµα)gµν(δ
ν
β + ωνβ) = gαβ

gαβ + ωβα + ωαβ = gαβ

ωαβ = −ωβα, (3.4)

where higher orders of ω is dropped since we assume it to be infinitesimal. Hence, the
infinitesimal expansion is proven.

Expanding the field to linear order in ωµν , we have

ϕ(xα) → ϕ((Λ−1) αρ x
ρ))

= ϕ(xα − ω α
ρ x

ρ)

= ϕ(x)− ω α
ρ x

ρ∂αϕ(x)

= ϕ(x)− gβρω
βαxρ∂αϕ(x)

= ϕ(x)− 1

2
(gβρω

βαxρ∂α − gβρω
αβxρ∂α)ϕ(x)

= ϕ(x)− 1

2
(gβρω

βαxρ∂α − gβαω
ρβxα∂ρ)ϕ(x),

(3.5)

where I relabeled ρ↔ α in the last term in the last line. Then,

δϕ

δωµν
= −1

2
(gβρgβµgανxρ∂α − gβαgρµgβνxα∂ρ)ϕ(x) =

1

2
(xν∂µ − xµ∂ν)ϕ(x). (3.6)

Since the Lagrangian L itself is also a scalar, it transforms similarly:

δL
δωµν

=
1

2
(xν∂µL − xµ∂νL) =

1

2
[∂α(xνgαµ − xµgαν)]L. (3.7)

On the other hand, by invoking the equations of motion, the variation of the Lagrangian
can also be written as

δL[ϕn, ∂αϕn]
δωµν

= ∂α

(∑
n

∂L
∂(∂αϕn)

δϕn
δωµν

)
= ∂α

(
1

2

∑
n

∂L
∂(∂αϕn)

(xν∂µ − xµ∂ν)ϕn

)
. (3.8)

Equating Eq. (3.7) and Eq. (3.8), we find

∂α

[
xν

(∑
n

∂L
∂(∂αϕn)

∂µϕn − gαµL

)
− xµ

(∑
n

∂L
∂(∂αϕn)

∂νϕn − gανL

)]
= 0

∂α[xνTαµ − xµTαν ] = 0, (3.9)

where Tµν is the energy-momentum tensor. Thus, we can identify the conserved currents
as

Kµνα = xνTαµ − xµTαν . (3.10)
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Chapter 3. Classical field theory

(b) Given the Lagrangian

L = −1

2
ϕ(□+m2)ϕ, (3.11)

we calculate the energy-momentum tensor as

Tαµ =
∂L

∂(∂αϕ)
∂µϕ− gαµL = (∂αϕ)(∂µϕ)−

1

2
gαµ[(∂νϕ)

2 −m2ϕ2] (3.12)

Note first that the energy-momentum tensor itself is conserved when the equation of motion
of the field is satisfied:

∂αTαµ = □ϕ(∂µϕ) + (∂αϕ)(∂α∂µϕ)− (∂µ∂νϕ)(∂νϕ) +m2(∂µϕ)ϕ

= □ϕ(∂µϕ) +m2(∂µϕ)ϕ

= 0,

(3.13)

where I invoked the equation of motion of the field □ϕ = −m2ϕ.

Next, we verify the conservation of the Lorentz current Kµνα:

∂αKµνα = ∂α[xνTαµ − xµTαν ] = gναTαµ − gµαTαν = Tνµ − Tµν = 0 , (3.14)

where I have used Eq. (3.13), the identity ∂µxν = gµν , and also the fact that the energy-
momentum tensor is symmetric (cf. Eq. (3.12)).

(c)

Qi =

∫
d3xK0i0 =

∫
d3x(xiT00 − tT0i) =

∫
d3x(xiE − tpi) =

∫
d3xxiE − tPi. (3.15)

Here, E is the energy density, pi is the momentum density, and Pi is the total momentum
of the system. These conserved quantities correspond exactly to the three boost generators
of the Lorentz group1. Comparing this result directly with Eq. (10.22) of the textbook, one
can observe that these quantities Qi are precisely the boost generators L0i of the Lorentz
group in momentum space.

(d) From the Heisenberg equation for a conserved charge operator,

0 =
dQi

dt
= i[Qi, H] +

∂Qi

∂t
, (3.16)

one readily observes this can be consistent if and only if

i
∂Qi

∂t
= [Qi, H] . (3.17)

If the charge operator is not invariant under the equations of motion (i.e., [Qi, H] ̸= 0),
the Heisenberg equation still holds. However, in this case, the charge operator has explicit

1From here onward, I will slightly abuse terminology by using the word ”charges” to refer both to the
symmetry group generators themselves and to their eigenvalues (the conserved charges arising from Noether’s
theorem).
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Chapter 3. Classical field theory

time dependence—it has intrinsic dynamics, which is exactly why it is not an invariant
of the equations of motion. Therefore, although these charges remain conserved (due to
Noether’s theorem), they do not correspond to invariants of the dynamics.

As a concrete example, for the boost generators Qi ≡ L0i we just calculated, explicit time
dependence appears from Eq. (3.15). Applying the Heisenberg equation Eq. (3.17), one
finds:

[L0i, H] = −iPi . (3.18)

This is precisely one of the Poincaré algebra relation, where the commutator of a boost
generator in i-th direction and the time-translation operator (the HamiltonianH) yields the
i-th spatial momentum operator Pi. Physically, this commutation relation indicates that
under a boost transformation, the energy of the system changes (i.e., frame-dependent)
unless the system possesses zero spatial momentum—in that special case, the system’s
energy is exactly its invariant mass.

On the other hand, for rotations, the Poincaré algebra states that the rotation generators
Ji commute with the time-translation operator (the Hamiltonian H):

[Ji, H] = 0 . (3.19)

Therefore, one can define a conserved charge associated with rotations—the spin—which
also remains invariant under the equations of motion. Thus, rotation provides a well-defined
quantum number labeling representations of the full spacetime symmetry – Poincaré group,
while boost can not.

3.3

(a) Let

L′ ≡ L+ ∂αXα. (3.20)

Under a spacetime translation, following the textbook treatment, ϕn → ϕn + ξν∂νϕn, we
compute the variation of the action:

δS =

∫
d4xδL′ =

∫
d4x[δL+ δ(∂αXα)] =

∫
d4x[δL+ ∂αδXα]. (3.21)
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Chapter 3. Classical field theory

Since Xα[ϕn, ∂µϕn] is a functional of the fields ϕn and fields’ derivatives ∂µϕn
2, its variation

is

δXα =
∑
n

[
∂Xα

∂ϕn
δϕn +

∂Xα

∂(∂βϕn)
∂βδϕn

]
, (3.22)

and thus, its functional derivative with respect to the transformation parameter ξν becomes

δXα

δξν
=
∑
n

[
∂Xα

∂ϕn
∂νϕn +

∂Xα

∂(∂βϕn)
∂β(∂νϕn)

]
=
∑
n

[
∂Xα

∂ϕn
∂νϕn +

∂Xα

∂(∂βϕn)
∂ν(∂βϕn)

]
= ∂νXα,

(3.23)

which simply follows from the chain rule.

Invoking the equations of motion, we now have

δL′[ϕn, ∂µϕn]

δξν
=
δL[ϕn, ∂µϕn]

δξν
+ ∂α

δXα[ϕn, ∂µϕn]

δξν

= ∂µ

(∑
n

∂L
∂(∂µϕn)

∂νϕn

)
+ ∂α∂νXα

= ∂µ

(∑
n

∂L
∂(∂µϕn)

∂νϕn + ∂νXµ

)
,

(3.24)

where I have relabeled the dummy indices α → µ in the second term.

Meanwhile, since L′ is also a scalar, we expect

δL′

δξν
= ∂ν(L+ ∂αXα). (3.25)

Equating Eq. (3.24) and Eq. (3.25), we find

∂µ

(∑
n

∂L
∂(∂µϕn)

∂νϕn + ∂νXµ − gµνL − gµν∂αXα

)
= 0. (3.26)

2

Side Remark: As a spoiler, the famous θ term εµναβF a
µνF

a
αβ = ∂µ(εµναβ(A

a
νF

a
αβ − g

3f
abcAa

νA
b
αA

c
β))

is an example of total derivative on the Lagrangian, which does not contribute to matrix element in
perturbation theory, but has real physics effect in non-perturbative theory. See, for example, Eq. (7.109),
Eq. (29.105), and Eq. (30.89) of the textbook. Also note the functional – the Chern-Simons current

– Xµ = εµναβ(A
a
νF

a
αβ − g

3f
abcAa

νA
b
αA

c
β) of the θ term indeed depends both on fields as well as fields

derivatives. Also, this chapter is about classical fields, which have no fundamental reasons to argue
Xµ should not depend on fields derivatives. I have seen many false derivations of this problem assuming
Xµ depends only on fields, which is not valid in the very first place. In fact, as I showed with chain rule,
the result holds irregardless of how higher-derivatives of the fields ∂α∂β · · ·ϕn the functional Xµ depends
on.
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Therefore, the change in the energy-momentum tensor due to adding a total derivative to
the Lagrangian is given by

δTµν = ∂νXµ − gµν∂αXα = ∂α
(
gανXµ − gµνXα

)
≡ ∂αKαµν , (3.27)

where I have written it as a total derivative of an auxiliary tensor Kαµν . Note that Kαµν is
antisymmetric in its first two indices: α ↔ µ.

(b) Evaluating the resulting variation of the total energy,

δQ =

∫
d3xδT00

=

∫
d3x (∂tX0 − ∂αXα)

=

∫
d3x (∂tX0 − ∂tX0 + ∂iXi)

=

∫
d3x (∂iXi)

=

∫
dΩ

XidA

= 0,

(3.28)

by divergence theorem and assuming Xi are constructed from operators dying fast enough
at spatial infinity.

(c) We first compute

∂Fαβ
∂(∂µAν)

=
∂(∂αAβ)

∂(∂µAν)
−
∂(∂βAα)

∂(∂µAν)
= gαµgβν − gβµgαν . (3.29)

For the Lagrangian L = −1
4
F 2
µν , the field equation for Aν becomes

∂µ
∂L

∂(∂µAν)
= −1

2
∂µ[Fαβ(gαµgβν − gανgβµ)] = −∂µFµν =

∂L
∂Aν

= 0, (3.30)

where we used the fact that Fµν = −Fνµ.
The canonical energy-momentum tensor is then

Tµν =
∂L

∂(∂µAγ)
∂νAγ − gµνL

= −1

2
Fαβ(gαµgβγ − gαγgβµ)(∂νAγ)− gµνL

= −1

2
(Fµγ − Fγµ)(∂νAγ)− gµνL

= −Fµα(∂νAα)− gµνL.

(3.31)

Clearly, the first term of the tensor is not symmetric under µ ↔ ν, so we aim to correct
this.
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Chapter 3. Classical field theory

To symmetrize, we consider the antisymmetric part and require it to vanish after adding
the contribution from δTµν given by Eq. (3.27):

0 = Tµν + δTµν − Tνµ − δTνµ

= −Fµα(∂νAα) + Fνα(∂µAα) + ∂α(Kαµν −Kανµ)

= (∂αAµ − ∂µAα)(∂νAα) + (∂νAα − ∂αAν)(∂µAα) + ∂α(Kαµν −Kανµ)

= (∂αAµ)(∂νAα)− (∂αAν)(∂µAα) + ∂α(Kαµν −Kανµ)

= (∂αAµ)(∂νAα)− (∂αAν)(∂µAα) + (∂αAν)(∂αAµ)− (∂αAν)(∂αAµ) + ∂α(Kαµν −Kανµ)

= Fνα(∂αAµ) + Fαµ(∂αAν) + ∂α(Kαµν −Kανµ)

= ∂α(FναAµ − FµαAν +Kαµν −Kανµ),

(3.32)

where we have used the equation of motion of the fields ∂µFµν = 0 from Eq. (3.30) to get
the last line.

Given the antisymmetric property of the first two indices ofKαµν and also the antisymmetric
property of Fµα, a natural choice is

Kαµν = FµαAν . (3.33)

The above derivation then ensures cancellation of the antisymmetric parts in the canonical
energy-momentum tensor. After including the divergence of the auxiliary tensor Kαµν , the
modified energy-momentum tensor becomes

Tµν = −Fµα(∂νAα)− gµνL+ ∂αKαµν = −Fµα(∂νAα)− gµνL+ Fµα(∂αAν) = FµαFαν − gµνL ,

(3.34)
which is now manifestly symmetric.

Finally, to solve forXµ, we start from where we introduced the auxiliary tensor and plugging
the explicit form of Eq. (3.33) we just found,

∂α
(
gανXµ − gµνXα

)
≡ ∂αKαµν = ∂α(FµαAν)

∂νXµ − gµν∂αXα = Fµα∂αAν . (3.35)

Now, contracting both sides with gµν :

∂αXα − 4∂αXα = gµνFµα∂αAν

∂αXα =
1

3
Fαµ∂αAµ =

1

3
∂α(FαµAµ)

Xα =
1

3
FαµAµ. (3.36)

A word of caution however, is that it is important to note that this expression for Xα is
obtained through contraction with the metric tensor gµν , and a general inversion to get
such a term in Lagrangian while preserving Lorentz covariance might not exist. Note that
even Aµ itself is not uniquely determined due to gauge invariance. In fact, what people
usually do is to add the remedy term directly onto the energy-momentum tensor instead
of the Lagrangian. This is totally fine as long as the modification does not spoils the
energy-momentum conservation. It’s the conservation law what really physical.
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Chapter 3. Classical field theory

3.4

x

J(y)

J(v)

J(u)

z

w

(a)

x

J(u)

J(v)

J(z)

y

w

(b)

Fig. 3.1: The two next-order Feynman diagrams of classical gravity.

The two next-order diagrams are displayed in Fig. 3.1. Reading off the expressions directly
from the diagrams, we have:

h2(x) =− λ2
∫
d4w

∫
d4z

∫
d4u

∫
d4v

∫
d4y Π(x,w)Π(w, y)Π(w, z)Π(z, u)Π(z, v)J(u)J(v)J(y)

− λ2
∫
d4w

∫
d4z

∫
d4u

∫
d4v

∫
d4y Π(x,w)Π(w, z)Π(w, y)Π(y, u)Π(y, v)J(u)J(v)J(z)

= −2λ2
∫
d4w

∫
d4z

∫
d4u

∫
d4v

∫
d4y Π(x,w)Π(w, y)Π(w, z)Π(z, u)Π(z, v)J(u)J(v)J(y) ,

(3.37)

where in the last step we used the fact that y and z are dummy integration variables.
From the Green’s function method, let us write h = h0+h1+h2, where h2 is of order O

(
λ2
)
.

Then, the equation of motion is

□(h0 + h1 + h2)− λ(h0 + h1 + h2)
2 − J = 0, (3.38)

which implies at order O
(
λ2
)
,

□h2 = 2λh0h1 +O
(
λ3
)
, (3.39)

Thus, we have

h2 = 2λ
1

□
(h0h1) = 2λ

1

□

[(
1

□
J

)(
λ
1

□

(
1

□
J
1

□
J

))]
. (3.40)

Using the two-point Green’s function Π = − 1
□ , this becomes

h2(x) = −2λ2
∫
d4w

∫
d4z

∫
d4u

∫
d4v

∫
d4y Π(x,w)Π(w, y)Π(w, z)Π(z, u)Π(z, v)J(u)J(v)J(y) ,

(3.41)
which confirms the result obtained directly from the Feynman diagrams.
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Chapter 3. Classical field theory

3.5

(a) The equation of motion is

□ϕ−m2ϕ+
λ

3!
ϕ3 = 0. (3.42)

The constant solutions ϕ(x) = c can be found by plugging this back into the equation of
motion,

−m2c+
λ

3!
c3 = 0 (3.43)

c

(
−m+

√
λ

6
c

)(
m+

√
λ

6
c

)
= 0. (3.44)

Thus, the constant solutions are c = 0 and c = ±

√
6m2

λ
. For these constant configura-

tions, the kinetic term vanishes, so the ground state energy can be determined by evaluating
the potential energy V (ϕ) = −1

2
m2ϕ2 + λ

4!
ϕ4:

V (ϕ = 0) = 0, V

ϕ = ±

√
6m2

λ

 = −3

2

m4

λ
. (3.45)

The two solutions ϕ = ±
√

6m
2

λ
correspond to degenerate ground states.

(b) The Z2 symmetry transformation ϕ → −ϕ maps one ground state to the other. If the
field has a vacuum expectation value ⟨ϕ⟩ = c, this transformation changes it as ⟨ϕ⟩ → −c.
Therefore, the vacuum does not respect the symmetry, unless c = 0.

(c) Consider the field redefinition ϕ(x) = c+ π(x). The Lagrangian becomes

L = −1

2
(c+ π(x))□π(x) +

1

2
m2(c+ π(x))2 − λ

4!
(c+ π(x))4 (3.46)

The equation of motion for π(x) is

□π(x)−m2(c+ π(x)) +
λ

6
(c+ π(x))3 = 0. (3.47)

Observe that the terms without π(x) are: −m2c + λ
6
c3 = c

(
−m2 + 6λm

2

6λ

)
= 0 cancel out,

where we plugged in c2 = 6m
2

λ
for either of the degenerate vacua. Thus, π(x) = 0 solves

the equation of motion.

Under the Z2 symmetry ϕ→ −ϕ, we have

c+ π → −c− π,

π → −π − 2c (3.48)

Since this transformation is really just ϕ → −ϕ written in another way, the Lagrangian
for π(x) of course remains invariant. Indeed, explicitly substituting π → −π − 2c into
Eq. (3.46) gives

L → −1

2
(−c− π(x))□(−π(x)) + 1

2
m2(−c− π(x))2 − λ

4!
(−c− π(x))4 = L. (3.49)
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3.6

(a) We have calculated the equation of motion for a massless Aν in Eq (3.30). Adding the mass
term and the current term, the equation of motion for Aν becomes

∂µFµν +m2Aν = Jν

□Aν − ∂ν∂µAµ +m2Aν = Jν . (3.50)

Taking the derivative ∂ν on both sides gives

m2(∂νAν) = ∂νJν = 0. (3.51)

Thus, when m ̸= 0, this enforces the Lorenz gauge condition ∂µAµ = 0 .

(b) The derivation follows exactly as in Eq. (3.61) and Eq. (3.62) of the textbook, with the
substitution □ → □+m2. Therefore, in Fourier space, we directly find

A0(r) =

∫
d3k

(2π)3
e

k2 +m2 e
ik⃗·r⃗

=
e

(2π)3

∫ ∞

0

k2dk

∫ 1

−1

d cos θ

∫ 2π

0

dϕ
1

k2 +m2 e
ikr cos θ

=
e

4π2

∫ ∞

0

dk
k2

k2 +m2

eikr − e−ikr

ikr

=
e

4π2

(∫ ∞

0

dk
k2

k2 +m2

eikr

ikr
+

∫ 0

−∞
dk

k2

k2 +m2

eikr

ikr

)

=
e

4π2ir

∫ ∞

−∞

kdk

k2 +m2 e
ikr ,

(3.52)

where, in the next-to-last line, we redefined k → −k in the second term.

(c) The integrand has poles at k = ±im. For eikr, we need to close the contour in the upper
half-plane, which captures the pole at k = im as m > 0. Evaluating the residue gives

A0(r) =
e

4π2ir
(2πi)

im

im+ im
e−mr =

e

4πr
e−mr . (3.53)

(d) Evidently, in the limit m→ 0, this expression recovers the familiar Coulomb potential:

A0(r) =
e

4πr
. (3.54)

(e) The Yukawa potential above exhibits a characteristic range given by r ∼ 1
m
. Given that

the typical range of the nuclear force is approximately 1 fm, this suggests that

m ∼ 1 fm−1 = 1 fm−1 × (ℏc) ≈ 200 MeV . (3.55)
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(f) Imposing the condition ∂µAµ = 0 directly in the Lagrangian, we find

L = −1

4
(∂µAν − ∂νAµ)

2 +
1

2
m2A2

µ − AµJµ

= −1

2
(∂µAν)

2 +
1

2
m2A2

µ − AµJµ

(3.56)

The equation of motion for Aν then becomes

(□+m2)Aν = Jν

(□+m2)(∂νAν) = ∂νJν

0 = 0. (3.57)

Hence, current conservation is automatically satisfied. Originally, it is the mass term that
effectively serves as a Lagrange multiplier enforcing this constraint. If the mass term is
switched off, the constraint in Eq. (3.51) reduces to a trivial equality.

3.7

(a) Since the action S =
∫
d4xL must be dimensionless in natural units, it follows that [L] = 4.

Examining the kinetic term in the Lagrangian, −1
2
h□h, we find:

2[h] + [□] = [L] = 4

2[h] + 2 = 4

[h] = 1 . (3.58)

Considering the second term, (MPl)
ah2□h, this implies:

a[MPl] + 3[h] + [□] = [L] = 4

a+ 3 + 2 = 4

a = −1 . (3.59)

Moreover, from Eq. (3.35) of the textbook, we know [T ] = [L] = 4. For the third term,
−(MPl)

bhT , we have:

b[MPl] + [h] + [T ] = 4

b+ 1 + 4 = 4

b = −1 . (3.60)

(b) At first order in the source, h(1) ∼ O(T 1), the equation of motion reads:

□h(1) = − T

MPl

= − m

MPl

δ3(x),

h(1)(x) = − m

MPl

1

□
δ3(x). (3.61)

23



Chapter 3. Classical field theory

This has the same structure as the Coulomb potential (cf. Eq. (3.61) in the textbook),
except for a different constant prefactor. Upon Fourier transformation, we obtain:

h(1) = − m

MPl

1

r
. (3.62)

The factor of 4π is absorbed into a rescaling of the gravitational field h(x) to align with
the classical Newtonian potential.

Proceeding to second order in the source, h(2) ∼ O
(
T 2
)
:

□h(2) =
1

MPl

□
[
(h(1))2

]
,

h(2) =
m2

M3
Pl

1

r2
. (3.63)

(c) Since the classical gravitational force is given by the gradient of the potential, for circular
motion, the orbital frequency ω relates to the gravitational potential via (noting that an
extra factor of 1

MPl
on the right hand side is needed to ensure dimensional consistency, since

[ω] = [s−1] = 1):

ω2R =
1

MPl

[
dh(1)

dr

]
r=R

ω2 =
1

MPlR

[
dh(1)

dr

]
r=R

=
mSun

M2
PlR

3 =
GNmSun

R3 (3.64)

ω ≈ 0.8× 10−7 s−1 .

(d) The correction to the orbital frequency is:

δω =
1

2ω
|δ(ω2)|

=
1

2ω

1

MPlR

∣∣∣∣∣dh(2)dr

∣∣∣∣∣
r=R

=
1

ω

m2
Sun

M4
PlR

4

=
1

ω

G2
Nm

2
Sun

R4c2

≈ 2.1× 10−14 s−1

= 86 arcsec/century ,

(3.65)

where we have inserted a factor of 1/c2 to restore dimensions.
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(e) Accounting for the influence of other planets:

δω =
1

2ωsolar

∑
planets

1

MPlRplanets

∣∣∣∣∣dh(1)dr

∣∣∣∣∣
r=Rplanets

=
GN

2ωsolar

∑
planets

mplanets

R3
planets

≈ 4× 10−12 s−1

= 2× 104 arcsec/century ,

(3.66)

where we approximate the distances between Mercury and the other planets by the plane-
tary orbital radii relative to the Sun.

(f) Both corrections are indeed observable in the case of Mercury, and constitute key exper-
imental tests of general relativity. In fact, at the time of writing, even the analogous
corrections for Venus are detectable. See Ref. [2] for details.

(g) Using the general Euler-Lagrange equations Eq. (3.2) derived in Problem 3.1, the equation
of motion for h(x) reads:

□h = (MPl)
−1[2h□h+□(h2)− T ]. (3.67)

The additional term is (MPl)
−12h□h. Since this term is of the same order as (MPl)

−1□(h2),
and given our rough order-of-magnitude estimation, both contribute comparably and can
be safely neglected.

3.8

The blackbody radiation paradox essentially argues that if the electromagnetic field is treated
classically, the number of available modes can increase without bound as the frequency grows.
Consequently, the total energy density, when integrated over all modes, becomes infinite. This
divergence can only be avoided if the higher-frequency modes are exponentially suppressed, as
shown in Eq. (2.14) and Eq. (2.17). Therefore, to resolve this issue, the electromagnetic field
must be treated quantum mechanically.

This argument remains valid even when electrons and atoms are described quantum me-
chanically, i.e., with discrete energy levels. Suppose we only quantized the electrons and atoms,
while electromagnetic field remains classical. First note that classically, each mode of the elec-
tromagnetic field carries an energy of ∼ kT by the equipartition theorem, regardless of the
frequency. This suggests that, even though the electrons or atoms system is quantized, it is
still capable of emitting radiation at any frequency across all modes. This again leads to a
divergence when integrating over an infinite number of modes.

In principle, the same reasoning applies to gravity. There is a clear analogy between the
electromagnetic and gravitational wave, especially as gravitational wave is now an experimen-
tally verified observation by LIGO and Virgo [3]. However, due to the extremely weak coupling
of gravitational interactions, whether a similar blackbody radiation equivalence can actually be
observed is another matter.
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3.9

(a) The Lagrangian is3

L = −1

4
F 2
µν − JµAµ

= −1

2
(∂µAν)

2 − JµAµ

=
1

2
Aµ□Aµ − JµAµ,

(3.68)

where we have imposed the Lorenz gauge condition ∂µAµ = 0. Referring to Section 3.4 of
the textbook, under the Lorentz gauge, the equation of motion for Aµ reduces to

□Aµ = Jµ, (3.69)

or

Aµ =
Jµ
□
. (3.70)

Substituting this back into the Lagrangian Eq. (3.68), and applying the Fourier space
replacement □ → −k2 (cf. Eq. (3.60) of the textbook), we find

L = J ′
µ

1

2k2
Jµ (momentum space). (3.71)

(b) In momentum space, the current conservation condition ∂µJµ = 0 becomes

ikµ · Jµ = 0

i(k0J0 − k1J1 − k2J2 − k3J3) = 0. (3.72)

Choosing kµ = (ω, κ, 0, 0), this implies

J1 =
ω

κ
J0 . (3.73)

(c) Substituting this relation back into the interaction term, we have

J ′
µ

1

2k2
Jµ =

J ′
0J0 − J ′

1J1 − J ′
2J2 − J ′

3J3

2(ω2 − κ2)

= −J
′
0J0

2κ2
− J ′

2J2 + J ′
3J3

2(ω2 − κ2)
.

(3.74)

(d) The first term, which lacks time derivatives (since no ω dependence) i.e., no dynamics,
corresponds to Eq. (3.61) of the textbook, describing a stationary point charge at the
origin—namely, the classical Coulomb potential. This term is instantaneous and, as such,
non-causal. The remaining terms, involving time derivatives, describe the two causally
propagating physical degrees of freedom. The poles at ω = ±κ in these terms correspond
to the advanced and retarded solutions of classical electrodynamics.

3It’s likely that the Lagrangian given in Problem 3.9 of the textbook contains a wrong sign in the current
term. This appears inconsistent with, for example, Eq. (3.87) or Eq. (8.98) of the textbook, although the physics
remains unaffected by this sign.
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(e) The instantaneous term represents an unphysical degree of freedom, which can be elimi-
nated by an appropriate choice of gauge. Following the method outlined in Section 8.2 of
the textbook, one can adopt the Coulomb gauge to set J0 = 0. Consequently, all physical
observables remain causal, and and no communication faster than the speed of light can
be made.

3.10

(a) The Lagrangian is4

L =
1

2
hµν□hµν +

1

MPl

hµνTµν . (3.75)

The equation of motion for hµν is

□hµν = − 1

MPl

Tµν , (3.76)

or

hµν = − 1

MPl

Tµν
□
. (3.77)

Replacing this back to the Lagrangian Eq. (3.75) and applying the Fourier space replace-
ment □ → −k2 (cf. Eq. (3.60) of the textbook), we find

L = T ′
µν

1

2k2
Tµν (momentum space). (3.78)

(b) Since Tµν is, by assumption, a symmetric rank-2 tensor, it contains 10 independent com-
ponents in general. Writing this explicitly, we have

L = T ′
00

1

2k2
T00 − T ′

01

1

k2
T01 − T ′

02

1

k2
T02 − T ′

03

1

k2
T03

+ T ′
11

1

2k2
T11 + T ′

12

1

k2
T12 + T ′

13

1

k2
T13 + T ′

22

1

2k2
T22 + T ′

23

1

k2
T23 + T ′

33

1

2k2
T33.

(3.79)

(c) In momentum space, the current conservation condition ∂µTµν = 0 becomes

ikµ · Tµν = 0

i(k0T0ν − k1T1ν − k2T2ν − k3T3ν) = 0. (3.80)

Choosing kµ = (ω, κ, 0, 0), we deduce

T1ν =
ω

κ
T0ν , (3.81)

which gives four constraints for ν = 0, 1, 2, 3. Using the symmetric property of Tµν , we
similarly have

Tµ1 =
ω

κ
Tµ0 (3.82)

4It’s likely that the Lagrangian given in Problem 3.10 of the textbook contains a wrong sign in the kinetic
term. This appears inconsistent with, for example, Eq. (8.128) or Eq. (22.24) of the textbook.
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for µ = 0, 1, 2, 3. In particular,

T11 =
ω

κ
T01 =

ω2

κ2
T00. (3.83)

Substituting these back into the Lagrangian in momentum space, we obtain

L =
T ′
00T00

(
1− 2ω

2

κ
2 + ω

4

κ
4

)
2(ω2 − κ2)

−
T ′
02T02

(
1− ω

2

κ
2

)
ω2 − κ2

−
T ′
03T03

(
1− ω

2

κ
2

)
ω2 − κ2

+
T ′
22T22 + 2T ′

23T23 + T ′
33T33

2(ω2 − κ2)

=
T ′
00T00

(
ω2 − κ2

)
2κ4

+
T ′
02T02

κ2
+
T ′
03T03

κ2
+
T ′
22T22 + 2T ′

23T23 + T ′
33T33

2(ω2 − κ2)
.

(3.84)

We identify three apparent causally propagating degrees of freedom (i.e., non-instantaneous
components):

Lcausal =
T ′
22T22 + 2T ′

23T23 + T ′
33T33

2(ω2 − κ2)
. (3.85)

(d) Since the graviton is massless, according to Wigner’s classification, only two physical prop-
agating degrees of freedom should remain. We can reduce the redundant one in Eq. (3.85)
by adding another Lorentz-invariant term to the Lagrangian: cTµµ

1

k
2Tνν . More concretely,

we add

c(T ′
22 + T ′

33 + · · · 1

k2
(T22 + T33 + · · · ), (3.86)

where · · · refers to non-causal terms, which we do not care about. The causal part of the
Lagrangian now becomes

Lcausal =
(1 + 2c)T ′

22T22 + 2T ′
23T23 + (1 + 2c)T ′

33T33 + 2cT ′
22T33 + 2cT ′

33T22

2(ω2 − κ2)
. (3.87)

To eliminate the redundant degree of freedom, we need to set c = −1
4
:

Lcausal =
1
2
T ′
22T22 + 2T ′

23T23 +
1
2
T ′
33T33 − 1

2
T ′
22T33 − 1

2
T ′
33T22

2(ω2 − κ2)

=
1
4
(T ′

22 − T ′
33)(T22 − T33) + T ′

23T23

(ω2 − κ2)
.

(3.88)

Consequently, the two remaining causally propagating degrees of freedom are
1

2
(h22 − h33)

and h23 .
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Old-fashioned perturbation theory

4.1

γ

e−

e+

µ−

µ+

(a) Retarded case

γ

e−

e+

µ−

µ+

(b) Advanced case

Fig. 4.1: The vertical dashed line indicates the time at which the intermediate state is evaluate.

(a) The diagrams corresponding to the two possible time orderings for process e+e− → γ →
µ+µ− are shown in Fig. 4.1. For the retarded case, the intermediate photon travels forward
in time. Therefore, the electron pair is annihilated before the muon pair is created. Hence,
the intermediate state consists solely of an on-shell photon with energy

E
(R)
0 = Eγ = |p⃗γ| = |p⃗1 + p⃗2|. (4.1)

For the advanced case, the intermediate photon travels backward in time, and the electron
pair is annihilated after the muon pair is created. Hence, the energy of the intermediate
state includes the electron pair, the muon pair, and the on-shell intermediate photon:

E
(A)
0 = E1 + E2 + E3 + E4 + Eγ = E1 + E2 + E3 + E4 + |p⃗1 + p⃗2|. (4.2)

In both cases, we have Ei = E1 +E2 = Ef = E3 +E4 and Eγ = |p⃗γ| = |p⃗1 + p⃗2| = |p⃗3 + p⃗4|.
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Therefore, for the retarded case,

1

Ei − E
(R)
0

=
1

E1 + E2 − Eγ
, (4.3)

and for the advanced case,

1

Ei − E
(A)
0

=
1

−E3 − E4 − Eγ
. (4.4)

(b) From part (a), we have

T
(R)
fi + T

(A)
fi =

e2

E1 + E2 − Eγ
+

e2

−E3 − E4 − Eγ

=
e2

(E1 + E2)− Eγ
− e2

(E1 + E2) + Eγ

=
2Eγe

2

E2
i − E2

γ

.

(4.5)

Defining kµ ≡ pµ1 + pµ2 = (E1 + E2, p⃗1 + p⃗2) = (Ei, p⃗γ) as the 4-momentum of the virtual

off-shell photon, we identify k2 = E2
i − |p⃗γ|2 = E2

i − |p⃗1 + p⃗2|2 = E2
i − E2

γ as precisely as
the denominator above.
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Cross sections and decay rates

5.1

From the definition of LIPS (cf. Eq. (5.21) in the textbook), we have

dΠLIPS = (2π)4δ4
(∑

p
) d3pf

(2π)3
1

2Ef

d3pB

(2π)3
1

2EB

=
1

16π2dΩ

∫
dpfp

2
f

1

Ef

1

EB
δ(Ef + EB − Ei −mA),

(5.1)

where pf ≡ |p⃗f |, and note that p⃗B = p⃗i− p⃗f , implicitly constrained by the integrated-out delta

function. Therefore, p2B = p2i + p2f − 2pipf cos θ.

Now, define x(pf ) = Ef + EB − Ei −mA. Then,

dx

dpf
=
dEf
dpf

+
dEB
dpB

dpB
dpi

=
pf
Ef

+
pf − pi cos θ

EB
=
EBpf + Efpf − Efpi cos θ

EBEf
. (5.2)

Substituting this expression back into the LIPS, we obtain

dΠLIPS =
1

16π2dΩ

∫ ∞

mf+EB |pf=0−Ei−mA

dx

[
p2f

δ(x)

EBpf + Efpf − EFpi cos θ

]

=
1

16π2dΩpf

[
EB + Ef

(
1− pi

pf
cos θ

)]−1

θ(mf + EB|pi=0 − Ei −mA).

(5.3)

Next, we plug this result into Eq. (5.22) of the textbook. Notice that |v⃗i − v⃗A| = |v⃗i| = pi
Ei
.

Therefore, we find

dσ

dΩ
=

1

(2Ei)(2EA)
pi
Ei

|M|2 1

16π2

[
EB + Ef

(
1− pi

pf
cos θ

)]−1

pfθ(mf + EB|pi=0 − Ei −mA)

=
1

64π2mA

[
EB + Ef

(
1− pi

pf
cos θ

)]−1 pf
pi
|M|2θ(mf + EB|pi=0 − Ei −mA).

(5.4)
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5.2

In Problem 2.6, I demonstrated that the integration measure
∫

d
3
k

2ωk
=
∫

d
3
k

2Ek
is Lorentz invariant.

Additionally, δ4 (
∑
p) remains Lorentz invariant because 4-momentum conservation holds true

in all inertial frames. Consequently, since dΠLIPS consists solely of Lorentz invariant factors,
the entire expression is Lorentz invariant.

5.3

(a) We shall work in the rest frame of the decaying muon. Without loss of generality, let
the outgoing electron-neutrino define the z-axis of our reference frame. Starting from the
definition of LIPS (cf. Eq. (5.21) in the textbook), we have

dΠLIPS = (2π)4δ4
(∑

p
) d3pe

(2π)3
d3pν̄e
(2π)3

d3pνµ

(2π)3
1

(2E)(2Eνµ)(2Ee)
(5.5)

Integrating over p⃗νµ via the δ-function, the spatial part fixes

p⃗νµ = −(p⃗e + p⃗νe). (5.6)

Squaring both sides and using the approximation of massless electron and neutrinos, where
Ee = |p⃗e| and Eν = |p⃗ν |, we can express Eνµ as

E2
νµ

= E2
e + E2 + 2EEe cos θ, (5.7)

with θ being the angle between the outgoing electron and the z-axis. Also,

dEνµ
d(cos θ)

=
EEe√

E2
e + E2 + 2EEe cos θ

=
EEe
Eνµ

. (5.8)

Then,

dΠLIPS =
1

8(2π)5
δ(m− E − Ee − Eνµ)

d3ped
3pν̄e

EEeEνµ

=
1

4(2π)4
dEE

d3pe
EeEνµ

δ(m− E − Ee − Eνµ)

=
1

4(2π)3
dE

∫
dEe

∫ 1

−1

EEe
Eνµ

d(cos θ)δ(m− E − Ee − Eνµ)

=
1

4(2π)3
dE

∫ ∞

0

dEe

∫ E+Ee

|E−Ee|
dEνµδ(m− E − Ee − Eνµ)

=
1

4(2π)3
θ(m− 2E)dE

∫ m/2

m/2−E
dEe

=
1

4(2π)3
θ(m− 2E)EdE.

(5.9)
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From Eq. (5.24) of the textbook, we get

Γ(µ− → e−ν̄eνµ) =
1

2m

∫
|M|2dΠLIPS

=
G2
F

2π3

∫ ∞

0

dE θ(m− 2E)(m2 − 2mE)E2

=
G2
Fm

2π3

∫ m/2

0

dE(mE2 − 2E3)

=
G2
Fm

5

192π3 .

(5.10)

(b) Substituting the numerical values GF = 1.166× 10−5 GeV−2, m = 105.66 MeV1, we obtain

τtheory = Γ−1
theory =

192π3

(1.166× 10−5 GeV−2)2(105.66 MeV)5
ℏ ≈ 2.19 µs . (5.11)

This corresponds to a relative difference of

τobs − τtheory
τtheory

≈ 0.46 % , (5.12)

compared to the experimental measurement.

At first glance, one might suspect that this discrepancy arises from neglecting the electron
mass in the derivation of the decay rate. However, according to Eq. (31.3) of the textbook,

the leading tree-level correction due to the massive electron is of order O
(
m

2
e

m
2
µ

)
≈ 2× 10−5,

which is far too small to account for the observed deviation. Rather, this deviation is likely
attributable to the radiative correction stemming from the interference between the tree-
level diagram and the QED 1-loop diagram, which appears at order O(αe) ≈ 0.01, aligning
well with expectations.

5.4

For circular polarization, we can take the photon polarization vectors produced by the incoming
electrons (cf. Eq. (A.48) of the textbook) as

ϵµL =
1√
2
(0, 1,−i, 0),

ϵµR =
1√
2
(0, 1, i, 0).

(5.13)

1It is important to emphasize that the decay rate scales with the 5th power of the mass, making it highly
sensitive. Using m = 106 MeV as given in the textbook would artificially inflate the relative deviation by nearly
an order of magnitude!
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Chapter 5. Cross sections and decay rates

Note that the outgoing muon momenta in Eq. (5.48) result from a rotation in the y–z plane
applied to the incoming electron momenta from Eq. (5.45). That is,

Rx(θ)p
µ
1 =


1

1
cos θ sin θ
− sin θ cos θ

 pµ1 = pµ3 ,

and
Rx(θ)p

µ
2 = pµ4 .

Applying the same y-z plane rotation Rx(θ) to the polarization vectors gives the circularly
polarized states of the photon exchanged in the final state:

ϵ̄µL = Rx(θ)ϵL =
1√
2
(0, 1,−i cos θ, i sin θ),

ϵ̄µR = Rx(θ)ϵR =
1√
2
(0, 1, i cos θ,−i sin θ).

(5.14)

It is straightforward to verify that these polarizations are orthogonal to the outgoing mo-
menta:

p3 · ϵ̄L = p4 · ϵ̄L = p3 · ϵ̄R = p4 · ϵ̄R = 0,

and properly normalized:
ϵ̄∗L · ϵ̄µL = ϵ̄∗R · ϵ̄µR = 1.

Therefore, summing over the amplitudes squares gives∑
states

|M|2 = |ϵL · ϵ̄∗L|2 + |ϵL · ϵ̄∗R|2 + |ϵR · ϵ̄∗L|2 + |ϵR · ϵ̄∗R|2

=
1

4
[(1 + cos θ)2 + (1− cos θ)2 + (1− cos θ)2 + (1 + cos θ)2]

= 1 + cos θ2,

(5.15)

as expected.

5.5

(a) The classical Rutherford scattering differential cross section is given by

dσ

dΩ
=

Z2
1Z

2
2α

2

16E2
K sin4 θ

2

, (5.16)

where

• Z1: the number of unit charges carried by the incident particle,

• Z2: the number of unit charges carried by the stationary heavy nucleus,

• α: the fine structure constant,
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Chapter 5. Cross sections and decay rates

• EK: the initial non-relativistic kinetic energy of the incident particle,

• θ: the scattering angle.

The assumptions underlying Rutherford scattering are: (1) the process is non-relativistic
and (2) the scattering is elastic, so the recoil of the heavy nucleus can be neglected.

(b) • The charge factor becomes e
4

4π
2 → Z

2
1Z

2
2e

4

4π
2 = 4Z2

1Z
2
2α

2.

• The momentum transfer is k⃗ = p⃗i − p⃗f such that

|⃗k|2 = |p⃗i|2 + |p⃗f |2 − 2p⃗i · p⃗f = 2p2(1− cos θ) = 4p2 sin2 θ

2
,

where we have used the fact that the scattering is elastic, so |p⃗i| = |p⃗f | = p.

• The non-relativistic kinetic energy is EK = p
2

2m
, hence p2 = 2mEK .

Under these replacements, Coulomb scattering reproduces the classical Rutherford scatter-
ing cross section:

e4m2

4π2

1

k⃗4
→ Z2

1Z
2
2α

2

16E2
K sin4 θ

2

(5.17)

Note that the above derivation is identical to the one in Section 13.4 of the textbook.
However, I suspect that Eq. (13.79) and Eq. (13.80) in the textbook contain typos: the
denominators with π4 should likely read π2.

(c) The Feynman diagram is shown in Fig. 5.1.

k

pi pf

Fig. 5.1: The Feynman diagram for Rutherford scattering

Without loss of generality, assume the incoming α particle is moving along the z-axis, with
four-momentum

pµi = (E, 0, 0, p), (5.18)

and the outgoing α particle has four-momentum

pµf = (E, 0, p sin θ, p cos θ), (5.19)
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where we again used the fact that the scattering is elastic, so Ei = Ef = E, and azimuthal
symmetry allows us to set pxf = 0.

The momentum of the virtual photon kµ is then given by

kµ = pµi − pµf = (0, 0,−p sin θ, p(1− cos θ)) , (5.20)

where p =
√
E2 −m2

α.

(d) This was already addressed in part (b).

(e) The tree-level result of QFT and the classical field description generally coincide. This can
be understood via the path integral (cf. Eq. (14.31) of the textbook):

〈
0; tf

∣∣0; ti〉 = N

∫
DΦ(x⃗, t)e

i
ℏS[Φ], (5.21)

where S is the action of the system, which has the same form in both classical and quantum
contexts (interpreting Φ as a classical or quantum field). In the classical limit ℏ → 0, the
integral is dominated by the stationary point of the action, δS = 0, which yields the Euler-
Lagrange equations. In QFT, this corresponds to the tree-level approximation. Thus, both
frameworks agree at tree level.

(f) Møller scattering (e−e− → e−e−) was originally derived under non-relativistic assumptions,
without invoking QED. However, recall that in the derivation of the Coulomb scattering,
one assumes the incident particle’s mass is much smaller than that of the target (e.g.,
me ≪ mp), which is clearly not applicable for the Møller scattering. Furthermore, unlike
in Coulomb scattering (e−p+ in the final state), the outgoing particles in Møller scattering
(e−e− in the final state) are indistinguishable, necessitating the inclusion of both t- and
u-channel diagrams instead of a single t-channel diagram as in the Coulomb scattering.

Therefore, Eq. (5.41) of the textbook does not apply to Møller scattering.

5.6

I shall denote p1 ≡ p
e
− , p2 ≡ p

e
+ , p3 ≡ p

µ
− , p4 ≡ p

µ
+ .

(a) Using Eq. (5.45) and Eq. (5.48) from the textbook, we have

s = (p1 + p2)
2 = (E + E)2 − (E − E)2 = 4E2 = E2

CM . (5.22)

t = (p1 − p3)
2 = (E − E)2 − (0− E sin θ)2 − (E − E cos θ)2 = −2E2(1− cos θ) . (5.23)

u = (p1 − p4)
2 = (E − E)2 − (0 + E sin θ)2 − (E + E cos θ)2 = −2E2(1 + cos θ) . (5.24)
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(b) Define a shorthand pij ≡ pµi p
µ
j = pi · pj. Then,

s+ t+ u = p21 + p22 + 2p12 + p21 + p23 − 2p13 + p21 + p24 − 2p14

= 2pµ1(p
µ
1 + pµ2 − pµ3 − pµ4) + p21 + p22 + p23 + p24

=
∑
i

p2i

=
∑
i

m2
i ,

(5.25)

where i runs over all the particle participating into the interactions, and we used the
momentum conservation such that pµ1 + pµ2 − pµ3 − pµ4 = 0. If we take the ultra-relativistic
limit that me → 0 and mµ → 0, then

s+ t+ u = 0. (5.26)

(c) Note that t2+u2 = 4E4[(1−cos θ)2+(1+cos θ)2] = 8E4(1+cos2 θ) = s
2

2
(1+cos2 θ). Then,

we can write

dσ

dΩ
=

e4

64π2E2
CM

(1 + cos2 θ) =
e4

32π2s3
(t2 + u2) . (5.27)

(d) We have already derived the general result in part (b):

s+ t+ u =
∑
i

m2
i = 2m2

e + 2m2
µ. (5.28)
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The S-matrix and time-ordered
products

6.1

Starting from the Feynman propagator in Eq. (6.34) of the textbook,

DF (x1, x2) =

∫
d4k

(2π)4
i

k2 −m2 + iε
eik(x1−x2)

=

∫ ∞

0

ds

∫
d4k

(2π)4
eik(x1−x2)eis(k

2−m2
)e−εs

=

∫ ∞

0

dse−ism
2
∫

d4k

(2π)4
ei[k

2
s+k(x1−x2)],

(6.1)

where I have employed the Schwinger parameters i
A
=
∫∞
0
dseisA (cf. Eq. (B.5) of the textbook),

which holds for Im(A) > 0. Also, I have taken the limit limε→0 e
−εs → 1 in the last line.

The d4k integral is Gaussian and can be evaluated using Eq. (14.7) of the textbook:

∫ ∞

−∞
dp⃗e−

1
2
p⃗
†
Ap⃗+J⃗

†
p⃗ =

√
(2π)n

detA
e

1
2
J⃗
†
A

−1
J⃗ (6.2)

with A = −2isgµν and Jµ = i(xµ1 − xµ2). Note that detA = −16s4 and A−1 = i
2s
gµν . Thus, we

have

DF (x1, x2) =
−i
16π2

∫ ∞

0

ds

s2
exp

[
−i
[
(x1 − x2)

2

4s
+ sm2

]]
. (6.3)
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Taking the m→ 0 limit and defining β ≡ 1
s
, we obtain

DF (x1, x2) =
−i
16π2

∫ ∞

0

dβ exp

[
−i(x1 − x2)

2

4
β

]
=

−i
16π2

∫ ∞

0

dβ exp

[
−i(x1 − x2)

2 − iε

4
β

]
=

−i
16π2

−4i

(x1 − x2)
2 − iε

= − 1

4π2

1

(x1 − x2)
2 − iε

,

(6.4)

where I inserted an −iε inside the exponent in the second line to ensure convergence of the
integral for all values of (x1 − x2)

2. Note that the sign of iε must be negative; choosing +iε
instead is not an innocuous distortion because it would lead to divergence in eεβ → ∞ as
β → ∞.

Side Remark: the physical role of this iε term differs from that appearing in the
momentum-space Feynman propagator i

k
2−m2

+iε
; in particular, their mass dimensions are

not even the same.

6.2

Starting from Eq. (6.26) of the textbook, one might naively expect the term

⟨0|ϕ0(x2)ϕ0(x1)|0⟩θ(−τ)

to correspond to the advanced propagator, and similarly,

⟨0|ϕ0(x1)ϕ0(x2)|0⟩θ(τ)

to correspond to the retarded propagator. However, these identifications can not be cor-
rect because they are not Lorentz invariant. For example, the term ⟨0|ϕ0(x1)ϕ0(x2) |0⟩ =∫

d
3
k

(2π)
3

1
2ωk

e−ik(x1−x2) is Lorentz invariant (cf. Problem 2.6 and the fact that the exponential in-

volves only Lorentz-invariant quantity). In contrast, the step function θ(t2− t1) ≡ θ(−τ) is not
invariant under Lorentz transformations. Hence, the whole term can not be Lorentz invariant.

To further illustrate this point, consider ϕ0(x1) and ϕ0(x2) are separated by a spacelike
separation (x1 − x2)

2 < 0. Then, there exists a continuous Lorentz transformation that can
reverse the time ordering, rendering θ(−τ) ambiguous. Thus, any objects built from the product
of θ(±τ) with a Lorentz invariant function will fail to be invariant unless it vanishes in the space-
like region. Therefore, to construct a Lorentz invariant advanced (or retarded) propagator, it
is insufficient to just enforce time ordering; the propagator must also vanish for spacelike
separations.

To construct the correct form of the advanced propagator, we again start from Eq. (6.26) of
the textbook, but reverse the time ordering in the first term by redefining τ → −τ . Note that
the exponential must remain unchanged—we must not allow both terms to carry either both
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positive or both negative frequency modes, as that would lead to a unphysical negative energy
state. Accordingly, we must also redefine ωk → −ωk in the first term (yep, this is exactly the
Feynman–Stueckelberg interpretation), so that −i(−ωk)(−τ) = −iωkτ . This leads us to

DA(x1, x2) =

∫
d3k

(2π)3
1

2ωk

[
−e−ik(x1−x2) + eik(x1−x2)

]
θ(−τ). (6.5)

This ensures that both terms now respect the correct time ordering θ(−τ). The minus sign in
front of the first term arises from the sign flip of ωk. We now need to demonstrate it is indeed
Lorentz invariant.

To save notations, define

D(x1, x2) ≡ ⟨0|ϕ0(x1)ϕ0(x2)|0⟩ =
∫

d3k

(2π)3
1

2ωk
e−ik(x1−x2), (6.6)

which is Lorentz invariant (cf. Problem 2.6 and the fact that the exponential involves only
Lorentz-invariant quantity). Then, the advanced propagator can be written as

DA(x1, x2) = − [D(x1, x2)−D(x2, x1)] θ(−τ) = −⟨0|[ϕ0(x1), ϕ0(x2)]|0⟩θ(−τ) (6.7)

Again, if the separation between x1 and x2 is spacelike, i.e., (x1 − x2)
2 < 0, then a continuous

Lorentz transformation exists that can reverse the time ordering between the two events and
the step function θ(−τ) becomes frame-dependent and thus non-invariant. However, now, the
commutator ⟨0|[ϕ0(x1), ϕ0(x2)]|0⟩ = 0 for spacelike separation, as it has support only on and
inside the lightcone (cf. Eqs. (12.76)–(12.80) of the textbook), which is just the requirement of
causality. Therefore, any ambiguity in θ(−τ) is removed by the vanishing of the commutator.

Conversely, when (x1−x2)2 ≥ 0, i.e., when the points are separated by a timelike or lightlike
interval, no continuous Lorentz transformation can invert their causal order. In this case, the
step function θ(−τ) is well-defined, and we conclude that the advanced propagator takes the
form:

DA(x1, x2) =

{
− [D(x1, x2)−D(x2, x1)] θ(−τ) (x1 − x2)

2 ≥ 0

0 (x1 − x2)
2 < 0

(6.8)

Since D(x1, x2) is manifestly Lorentz invariant, and the use of θ(−τ) is restricted to the causal
regime where it is unambiguous, the advanced propagator DA, defined in Eq. (6.5), is Lorentz
invariant and has correct time ordering.

Similarly, the retarded propagator can be expressed as

DR(x1, x2) = [D(x1, x2)−D(x2, x1)] θ(τ) = ⟨0|[ϕ0(x1), ϕ0(x2)]|0⟩θ(τ), (6.9)

where the time ordering is reversed in the second term of Eq. (6.26) of the textbook, along with
the appropriate sign change of ωk.

Continuing with the derivation,

DA = − [D(x1, x2)−D(x2, x1)] θ(−τ)

=

∫
d3k

(2π)3
1

2ωk

[
−eik⃗(x⃗1−x⃗2)e−iωkτ + e−ik⃗(x⃗1−x⃗2)eiωkτ

]
θ(−τ)

=

∫
d3k

(2π)3
1

2ωk
e−ik⃗(x⃗1−x⃗2)

[
eiωkτ − e−iωkτ

]
θ(−τ),

(6.10)
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where we used the substitution k⃗ → −k⃗ in the first term, which leaves the integral measure
invariant.

For τ < 0, we close the contour in the lower half-plane. The relevant contour integrals are∫ ∞

−∞

dω

ω − (ωk − iε)
eiωτ = −2πieiωkτθ(−τ) +O(ε), (6.11)∫ ∞

−∞

dω

ω − (−ωk − iε)
eiωτ = −2πie−iωkτθ(−τ) +O(ε), (6.12)

where the minus signs arise from clockwise contour closure.

Therefore, the advanced propagator becomes

DA(x1, x2) = lim
ε→0

−

∫
d3k

(2π)3
1

2ωk
e−ik⃗(x⃗1−x⃗2)

i

2π

∫
dωeiωkτ

[
1

ω − (ωk − iε)
− 1

ω − (−ωk − iε)

]
= lim

ε→0
−

∫
d3k

(2π)3
1

2ωk
e−ik⃗(x⃗1−x⃗2)

i

2π

∫
dωeiωkτ

[
2ωk

(ω + iε)2 − ω2
k

]
= lim

ε→0
−

∫
d4k

(2π)4
i

(k0 + iε)2 − k⃗2 −m2
eik(x1−x2)

= lim
ε→0

−

∫
d4k

(2π)4
i

k2 −m2 + iε
eik(x1−x2) .

(6.13)

For the retarded propagator, we close the contour in the upper half-plane since τ > 0,
obtaining ∫ ∞

−∞

dω

ω − (ωk + iε)
eiωτ = 2πieiωkτθ(τ) +O(ε), (6.14)∫ ∞

−∞

dω

ω − (−ωk + iε)
eiωτ = 2πie−iωkτθ(τ) +O(ε). (6.15)

Hence,

DR(x1, x2) = lim
ε→0

+

∫
d3k

(2π)3
1

2ωk
e−ik⃗(x⃗1−x⃗2)

[
−eiωkτ + e−iωkτ

]
θ(τ)

= lim
ε→0

+

∫
d3k

(2π)3
1

2ωk
e−ik⃗(x⃗1−x⃗2)

i

2π

∫
dωeiωkτ

[
1

ω − (ωk + iε)
− 1

ω − (−ωk + iε)

]
= lim

ε→0
+

∫
d4k

(2π)4
i

(k0 − iε)2 − k⃗2 −m2
eik(x1−x2)

= lim
ε→0

+

∫
d4k

(2π)4
i

k2 −m2 − iε
eik(x1−x2) .

(6.16)
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Side Remark: By the way, there exists a very interesting relationship connecting the
advanced and retarded propagators to the Feynman propagator. For the advanced
(retarded) propagator, both poles of the integrand lie below (above) the real axis:
k0 = ±ωk − iε (resp. k0 = ±ωk + iε). In contrast, for the Feynman propagator, the
poles are located on opposite sides of the real axis: k0 = ±ωk ∓ iε. These differences in
pole prescription lead to the following identities in momentum space:

ΠA(k) =
i

2ωk

[
1

ω − (ωk − iε)
− 1

ω − (−ωk − iε)

]
=

i

2ωk

[
1

ω − ωk + iε
− 1

ω + ωk − iε
− 1

ω + ωk + iε
+

1

ω + ωk − iε

]
= ΠF (k)−

i

2ωk

[
1

ω + ωk + iε
− 1

ω + ωk − iε

]
= ΠF (k) +

1

ωk
Im

[
1

ω + ωk + iε

]
= ΠF (k)−

π

ωk
δ(ω + ωk),

(6.17)

where I have used Eq. (24.26) of the textbook:

1

k0 − ωk + iε
− 1

k0 − ωk − iε
= −2πiδ(k0 − ωk). (6.18)

Analogously, for the retarded propagator:

ΠR(k) =
i

2ωk

[
1

ω − (ωk + iε)
− 1

ω − (−ωk + iε)

]
= ΠF (k) +

1

ωk
Im

[
1

ω − ωk + iε

]
= ΠF (k)−

π

ωk
δ(ω − ωk).

(6.19)

As a spoiler, I just verified Eq. (24.27) of the textbooka. These propagators are closely
related to the optical theorem and the Cutkosky cutting rules.

aExcept that I used a flipped convention of ”advanced” and ”retarded”, which is just a matter of
”whose point of view” with nothing physical.

6.3

Starting from the general basis for a state with n particles, we define

|ψn⟩ = Na†k1 · · · a
†
kn

|Ω⟩ , (6.20)

where N is a normalization factor. The normalization condition for the vacuum state imposes

1 = ⟨Ω|Ω⟩ = |N |2. (6.21)
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We proceed by examining the matrix element of an operator O, sandwiched between basis
states as ⟨ψn| O |ψm⟩. Since we are concerned only with non-trivial scattering processes, we
assume |ψm⟩ ̸= |ψn⟩ — that is, either m ̸= n or, if m = n, at least one momentum in the final
state differs from that in the initial state.

Furthermore, we impose that O must act non-trivially on all m particles in the initial state
and all n particles in the final state. Without this condition, subsets of particles could remain
unaffected, resulting in trivial identity factors, which can be factored out from the scattering
matrix1.

The matrix element is then given by

⟨ψn| O |ψm⟩ = |N |2
∑
k,l

∫
dq1 · · · dqkdp1 · · · dplCkl(q1, . . . , pl)

× ⟨Ω| akn · · · ak1a
†
q1
· · · a†qkapl · · · ap1a

†
k
′
1
· · · a†

k
′
m
|Ω⟩ .

(6.22)

Note that the non-triviality condition implies that only terms with k ≥ n and l ≥ m can be
non-trivial in the sum.

Now, we can systematically commute all annihilation operators to the right and all creation
operators to the left. Each time an annihilation operator passes a creation operator, it produces
a Dirac delta function δ(p − k) through contraction. For instance, we commute the group
a†q1 · · · a

†
qk

past akn · · · ak1 to the left. If any of these creation operators remains uncontracted
and acts directly on the vacuum in the final state, the matrix element vanishes. Therefore, to
obtain a nonzero result, it must be that k ≤ n. The same argument also leads to l ≤ m.

Combining these with the non-trivial scattering conditions, we conclude that only term with
k = n and l = m survives. After performing the contractions, the surviving term produces
a series of delta functions. Note this procedure is de facto ”normal ordering”. By normal
ordering these creation/annihilation operators, the only parts that are not vanishing in vacuum
matrix elements are all kinds of possible contractions resulting delta functions. One can refer
to Section 7.A of the textbook for further details of normal ordering and contractions. We can
then carry out the integral:

⟨ψn| O |ψm⟩ =
∫
dq1 · · · dqkdp1 · · · dplCkl(q1, . . . , pl)

[
δ(q1 − k1) · · · δ(p1 − k′1) + (permutations)

]
= n!m!Cnm(k1, · · · , k′m).

(6.23)

Here, the factors n!m! account for the number of ways to contract the creation and annihilation
operators: there are n! ways to contract akn · · · ak1 with a†q1 · · · a

†
qn

and m! ways to contract

apm · · · ap1 with a†
k
′
1
· · · a†

k
′
m
. These combinatorial factors are often absorbed into the definition

of O itself, effectively redefining O → 1
n!m!

O where it appears in the Lagrangian.

1More formally, we need to invoke the cluster decomposition principle here, and the non-interacting part of
the scattering amplitude corresponds to the disconnected pieces of Green’s functions.
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Feynman rules

7.1

(a)

iMtree =
p1

p2

p3

= ig . (7.1)

(b)

iM1-loop =

k

k − p2

k − p1

p1

p2

p3

= (ig)3
∫

d4k

(2π)4
i

k2 −m2 + iε

i

(k − p2)
2 −m2 + iε

i

(k − p1)
2 −m2 + iε

.

(7.2)
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(c)

⟨ϕ(x1)ϕ(x2)ϕ(x3)⟩ = x1

x2

x3

x

y

z

= (ig)3
∫
d4x

∫
d4y

∫
d4zD(x1, x)D(x, y)D(y, x2)D(y, z)D(z, x3)D(z, x)

= (ig)3
∫
d4x

∫
d4y

∫
d4z

∫
d4p′1

(2π)4

∫
d4k1

(2π)4

∫
d4p′2

(2π)4

∫
d4k2

(2π)4

∫
d4p′3

(2π)4

∫
d4k3

(2π)4

× eip
′
1(x1−x)eik1(x−y)eip

′
2(y−x2)eik2(y−z)eip

′
3(z−x3)eik3(z−x)

× i

p′21 −m2 + iϵ

i

k21 −m2 + iϵ

i

p′22 −m2 + iϵ

i

k22 −m2 + iϵ

i

p′23 −m2 + iϵ

i

k23 −m2 + iϵ
.

(7.3)

(d) Applying LSZ formula (cf. Eq. (6.1) of the textbook) to Eq. (7.3),

⟨f |S|i⟩ =
[
i

∫
d4x1e

−ip1x1(□+m2)

] [
i

∫
d4x2e

ip2x2(□+m2)

] [
i

∫
d4x3e

ip3x3(□+m2)

]
× ⟨ϕ(x1)ϕ(x2)ϕ(x3)⟩

=

[
−i
∫
d4x1e

−ip1x1(p21 −m2)

] [
−i
∫
d4x2e

ip2x2(p22 −m2)

] [
−i
∫
d4x3e

ip3x3(p23 −m2)

]
× ⟨ϕ(x1)ϕ(x2)ϕ(x3)⟩

=

∫
d4p′1

(2π)4

∫
d4k1

(2π)4

∫
d4p′2

(2π)4

∫
d4k2

(2π)4

∫
d4p′3

(2π)4

∫
d4k3

(2π)4

∫
d4x1

∫
d4x2

∫
d4x3

∫
d4x

∫
d4y

∫
d4z

× ei(−p1+p
′
1)x1ei(p2−p

′
2)x2ei(p3−p

′
3)x3ei(−p

′
1+k1−k3)xei(−k1+p

′
2+k2)yei(−k2+p

′
3+k3)z

× (ig)3
p21 −m2

p′21 −m2 + iϵ

i

k21 −m2 + iϵ

p22 −m2

p′22 −m2 + iϵ

i

k22 −m2 + iϵ

p23 −m2

p′23 −m2 + iϵ

i

k23 −m2 + iϵ

= (ig)3
∫

d4p′1

(2π)4

∫
d4k1

(2π)4

∫
d4p′2

(2π)4

∫
d4k2

(2π)4

∫
d4p′3

(2π)4

∫
d4k3

(2π)4
(2π)24

× δ4(−p1 + p′1)δ
4(p2 − p′2)δ

4(p3 − p′3)δ
4(−p′1 + k1 − k3)δ

4(−k1 + p′2 + k2)δ
4(−k2 + p′3 + k3)

× p21 −m2

p′21 −m2 + iϵ

i

k21 −m2 + iϵ

p22 −m2

p′22 −m2 + iϵ

i

k22 −m2 + iϵ

p23 −m2

p′23 −m2 + iϵ

i

k23 −m2 + iϵ

= (2π)4δ4(p1 − p2 − p3)(ig)
3

∫
d4k

(2π)4
i

k2 −m2 + iϵ

i

(k − p2)
2 −m2 + iϵ

i

(k − p1)
2 −m2 + iϵ

,

(7.4)
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where I relabeled k1 → k in the last line. This expression matches exactly with Eq. (7.2)
from part (b), up to the overall factor (2π)4δ4(p1 − p2 − p3) that enforces momentum
conservation and factors out of the matrix element.

7.2

iM6pt = iλ. (7.5)

iM3pt = ig. (7.6)

The connected 2 → 4 diagram with a 6-point vertex contributes to the S-matrix as

⟨f |S|i⟩ = (2π)4δ4
(∑

p
)
iM6pt = (2π)4δ4(p1 + p2 − p3 − p4 − p5 − p6)iλ, (7.7)

while the disconnected 2 → 4 diagram composed of two 1 → 3 subdiagrams with 3-point
vertices contributes to the S-matrix as the square of the 1 → 3 amplitude,

⟨f |S|i⟩ = −(2π)8δ4

 ∑
subset1

pm

 δ4

 ∑
subset2

pn

 (M3pt)
2

= −(2π)8δ4(p1 − p3 − p4)δ
4(p2 − p5 − p6)g

2 + permutations of final states .

(7.8)

To check whether there is any interference between the connected and disconnected dia-
grams, one could sum the two and then take the square. However, it is obvious that each
additional delta function from a disconnected piece introduces an extra factor of spacetime vol-
ume TV

(2π)
4 , which is formally infinite. Hence, disconnected diagrams are always infinitely larger

than the connected ones, and any interference term vanishes.

7.3

(a) The diagrams are shown in Fig. 7.1.

e− e−

e− e−

(a) s-channel

e−

e−

e−

e−

(b) t-channel

e−

e−

e−

e−

(c) u-channel

Fig. 7.1: Spinless non-relativistic Møller scattering e−e− → e−e−

(b) The s-channel diagram Fig. 7.1a is forbidden due to charge conservation in real QED.

(c)

iM = iMt − iMu = (ieme)
i

t
(ieme)− (ieme)

i

u
(ieme) = −ie2m2

e

[
1

t
− 1

u

]
. (7.9)

46



Chapter 7. Feynman rules

(d) Since spin is conserved at each vertex, the allowed spin combinations are:

• t-channel: (i) |↑↑⟩ → |↑↑⟩, (ii) |↓↓⟩ → |↓↓⟩, (iii) |↑↓⟩ → |↑↓⟩, (iv) |↓↑⟩ → |↓↑⟩.
• u-channel: (i) |↑↑⟩ → |↑↑⟩, (ii) |↓↓⟩ → |↓↓⟩, (iii) |↑↓⟩ → |↓↑⟩, (iv) |↓↑⟩ → |↑↓⟩.

Then,

iM|↑↑⟩→|↑↑⟩ = iM|↓↓⟩→|↓↓⟩ = −ie2m2
e

(
1

t
− 1

u

)
, (7.10)

iM|↑↓⟩→|↑↓⟩ = iM|↓↑⟩→|↓↑⟩ = −ie
2m2

e

t
, (7.11)

iM|↑↓⟩→|↓↑⟩ = iM|↓↑⟩→|↑↓⟩ =
ie2m2

e

u
. (7.12)

(e) The squared amplitudes are:

|M|↑↑⟩→|↑↑⟩|2 = |M|↓↓⟩→|↓↓⟩|2 = e4m4
e

(
1

t2
+

1

u2
− 2

tu

)
, (7.13)

|M|↑↓⟩→|↑↓⟩|2 = |M|↓↑⟩→|↓↑⟩|2 =
e4m4

e

t2
, (7.14)

|M|↑↓⟩→|↓↑⟩|2 = |M|↓↑⟩→|↑↓⟩|2 =
e4m4

e

u2
. (7.15)

Let p1 = (E, p⃗i), p2 = (E,−p⃗i) and p3 = (E, p⃗f ), p4 = (E,−p⃗f ) be the initial and final
four-momenta in the CM frame, with E = 1

2
ECM. Then,

t = (p1 − p3)
2 = −2p2(1− cos θ), (7.16)

u = (p1 − p4)
2 = −2p2(1 + cos θ), (7.17)

where θ is the scattering angle, and p = |p⃗i| = |p⃗f | =
√
E2 −m2

e =
1
2

√
E2

CM − 4m2
e.

The CM differential cross section is given by (cf. Eq. (5.33) of the textbook):(
dσ

dΩ

)
CM

=
1

64π2E2
CM

× 1

2
× 1

4

∑
spins

|M|2

=
e4m4

e

128π2E2
CM

(
1

t2
+

1

u2
− 1

tu

)
=

e4m4
e

512π2E2
CMp

4

[
1

(1− cos θ)2
+

1

(1 + cos θ)2
− 1

1− cos2 θ

]
=

e4m4
e

32π2E2
CM(E

2
CM − 4m2

e)
2

1 + 3 cos2 θ

sin4 θ
,

(7.18)

where the factor of 1
2
in the first line accounts for the two identical particles in the final state,

and the factor of 1
4
averages out our ignorance of the unpolarized initial spin configurations.

Then, integrating over the azimuth angle ϕ, we arrive at(
dσ

d cos θ

)
CM

=
e4m4

e

16πE2
CM(E

2
CM − 4m2

e)
2

1 + 3 cos2 θ

sin4 θ
. (7.19)

The angular distribution is shown in Fig. 7.2.
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Fig. 7.2: The angular distribution

7.4

(a) The Feynman diagrams for the 2-point function are shown in Fig. 7.3. The cross denotes
a ”mass vertex” insertion.

(a) O
(
(m2)0

)
order (b) O

(
(m2)1

)
order

(c) O
(
(m2)2

)
order (d) O

(
(m2)3

)
order

Fig. 7.3: Mass insertions contributing to the 2-point function.

(b) The momentum-space Green’s function G(p2) is formally defined via the 2-point function:

⟨0|T{ϕ(x)ϕ(y)}|0⟩ =
∫

d4p

(2π)4
e−ip(x−y)iG(p2). (7.20)
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Let Gn(p
2) denote the O

(
(m2)n

)
contribution. At tree level, this is just the massless

propagator,

iG0 ≡
i

p2 + iε
. (7.21)

At higher orders,

iG1 = iG0(−im2)iG0, (7.22)

iG2 = iG0(−im2)iG0(−im2)iG0, (7.23)

iG3 = iG0(−im2)iG0(−im2)iG0(−im2)iG0. (7.24)

(c)

iG(p2) = iG1 + iG2 + iG3 + · · ·

=
i

p2 + iε
+

i

p2 + iε
(−im2)

i

p2 + iε
+

i

p2 + iε
(−im2)

i

p2 + iε
(−im2)

i

p2 + iε
+ · · ·

=
i

p2 + iε

∞∑
n=0

(
m2

p2 + iε

)n
=

i

p2 + iε

1

1− m
2

p
2
+iε

=
i

p2 −m2 + iε
,

(7.25)

where we treat the ”mass interaction” to be small (m2 ≪ p2) in the sense that the pertur-
bation series does not break down, such that the geometric series is well-defined. The final
expression reproduces the propagator that one would have obtained directly for a massive
scalar field.

(d) We can set up the Lagrangian as

L = −1

2
ϕ□ϕ− 1

2
m2ϕ2 + Jϕ. (7.26)

The equation of motion are
□ϕ = J −m2ϕ. (7.27)

Solving this perturbatively with ϕn = O
(
(m2)n

)
, we have

• O
(
(m2)0

)
:

□ϕ0 = J +O
(
(m2)1

)
. (7.28)

• O
(
(m2)1

)
:

□(ϕ0 + ϕ1) = J −m2ϕ0 +O
(
(m2)2

)
= J

(
1− m2

□

)
+O

(
(m2)2

)
. (7.29)
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• O
(
(m2)2

)
:

□(ϕ0+ϕ1+ϕ2) = J−m2(ϕ0+ϕ1)+O
(
(m2)3

)
= J

(
1− m2

□

(
1− m2

□

))
+O

(
(m2)3

)
.

(7.30)

Continuing the perturbation series, one can deduce that

□ϕ = □

(
∞∑
n=0

ϕn

)
= J

∞∑
n=0

(
−m

2

□

)n
= J

1

1 + m
2

□

, (7.31)

and hence

ϕ = J
1

□+m2 . (7.32)

However, this solves exactly the same equation of motion if one included the mass to begin
with:

(□+m2)ϕ = J. (7.33)

7.5

Besides the proof provided in Subsection 7.4.2 of the textbook, I present here an alternative
demonstration that integrating by parts does not affect matrix elements. The argument once
again reduces to showing that a total derivative term does not contribute in perturbation theory.
Consider modifying the Lagrangian by adding a total derivative:

L → L+ ∂µXµ. (7.34)

Then the action shifts as

S →
∫
d4x(L+ ∂µXµ) = S +

∮
S
3
∞

XµdΣµ. (7.35)

If we assume that Xµ is constructed from operators that asymptotically vanish at spatial
and temporal infinity—i.e., they approach the same trivial vacuum, ensuring Xµ → 0
at spacetime infinity—then the surface integral vanishes, and thus δS → 0. Since the action
remains unchanged, the matrix elements consequently remain unchanged as well.

However, the assumption in boldface is valid only in perturbation theory. In non-perturbative
theory, classical vacua that are topologically distinct from the trivial vacuum may exist, causing
the surface term to remain. In such cases, the above argument no longer applies.

7.6

There are four Feynman diagrams contributing to the ϕ1ϕ2 → ϕ1ϕ2 scattering process, shown
in Fig. 7.4. Two correspond to s-channel and two to u-channel diagrams. In each channel, the
intermediate propagator can be either a ϕ1 or a ϕ2.
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p2

p1
k = p1 + p2

p4

p3

ϕ1,2

ϕ2

ϕ1

ϕ2

ϕ1

(a) s-channel

p2

p1

p3

k = p1 − p4

p4

ϕ1,2

ϕ2

ϕ1

ϕ2

ϕ1

(b) u-channel

Fig. 7.4: Feynman diagrams for ϕ1ϕ2 → ϕ1ϕ2 scattering.

From the kinetic terms in the Lagrangian, we know both ϕ1 and ϕ2 are massless:

p2ϕ1,ϕ2 = 0. (7.36)

Also,

s = (p1 + p2)
2 = (p3 + p4)

2 = 2p1 · p2 = 2p3 · p4, (7.37)

u = (p1 − p4)
2 = (p2 − p3)

2 = −2p1 · p4 = −2p2 · p3, (7.38)

s+ t+ u = 0. (7.39)

Let us denote Ms,i as the s-channel amplitude mediated by ϕi, and similarly for Mu,i.
Then,

iMs,1 = (ig)
i

k2
(ig) = −ig

2

s
, (7.40)

iMs,2 = (iλ)(−ipµ2)(ik
µ)
i

k2
(iλ)(ipν4)(−ikν) = −iλ

2

s
(p1 · p2 + p22)(p3 · p4 + p24) = −iλ

2s

4
, (7.41)

iMu,1 = (ig)
i

k2
(ig) = −ig

2

u
, (7.42)

iMu,2 = (iλ)(ipµ4)(ik
µ)
i

k2
(iλ)(−ipν2)(−ikν) = −iλ

2

t
(p21 − p1 · p4)(p22 − p2 · p3) = −iλ

2u

4
.

(7.43)

Combining all contributions,

iM = iMs,1 + iMs,2 + iMu,1 + iMu,2 = −ig2
(
1

s
+

1

u

)
− i

λ2

4
(s+ u) = i

g2t

su
+ i

λ2t

4
, (7.44)

and thus,

|M|2 =
(
g2t

su
+
λ2t

4

)2

. (7.45)

Plugging into Eq. (5.33) of the textbook,(
dσ

dΩ

)
CM

=
1

64π2E2
CM

|M|2 = 1

64π2s

(
g2t

su
+
λ2t

4

)2

. (7.46)
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7.7

(a) The diagram contains 6 internal lines and 4 vertices. Let the incoming momenta be p1,2
and the outgoing momenta be p3,4. Label the internal momenta as follows:

• At the vertex linked with p1: k1, k2, k3.

• At the vertex linked with p2: k3, k4, k5.

• At the vertex linked with p3: k2, k5, k6.

• At the vertex linked with p4: k1, k4, k6.

The momentum conservation at the four vertex gives the following equations:

k1 + k2 − k3 = p1, (7.47)

k2 − k5 + k6 = p3, (7.48)

k3 + k4 − k5 = p2, (7.49)

k1 + k4 − k6 = p4. (7.50)

However, only 3 of these 4 equations are linearly independent. To see this, write them in
matrix form A ·K = P, with

A =


1 1 −1 0 0 0
0 1 0 0 −1 1
0 0 1 1 −1 0
1 0 0 1 0 −1

 , K =


k1
k2
k3
k4
k5
k6

 , P =


p1
p2
p3
p4

 , (7.51)

where clearly, rank(A) = 3.

We may choose k2, k3, k4 as the independent loop momenta. Then,

k1 = p1 − k2 + k3, (7.52)

k5 = −p2 + k3 + k4, (7.53)

k6 = p3 − p2 − k2 + k3 + k4. (7.54)

The amplitude is then given by

iM = (−iλ)4
∫

d4k2

(2π)4

∫
d4k3

(2π)4

∫
d4k4

(2π)4

∏
i=1−6

i

k2i + iε

= −λ4
∫

d4k2

(2π)4

∫
d4k3

(2π)4

∫
d4k4

(2π)4

[
i

(p1 − k2 + k3)
2 + iε

i

k22 + iε

i

k23 + iε

× i

k24 + iε

i

(−p2 + k3 + k4)
2 + iε

i

(p3 − p2 − k2 + k3 + k4)
2 + iε

]
.

(7.55)

Note that there is no non-trivial way to map this diagram onto itself without tangling up
the external legs. Thus, the diagram has no non-trivial symmetry, and the symmetry factor
is 1 .
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(b) Chopping off the external lines, the symmetry of the diagram is that of a tetrahedron, which
is isomorphic to the symmetric group S4 with 24 elements. Therefore, the symmetry factor
is 24 . This includes 12 proper rotations, 6 pure reflections, and 6 rotatory reflections that
map the tetrahedron onto itself.

Alternatively, one can interpret the symmetry as arising from all permutations of the 4
vertices of the diagram, yielding 4! = 24 distinct configurations. After all, S4 is precisely
the permutation group of four objects.

7.8

(a)

L = −1

2
ϕW (□+m2

W )ϕW + |∂µϕµ|2 −m2
µ|ϕµ|2 + |∂eϕe|2 + |∂µϕνµ |

2 + |∂µϕνe|
2

+ gϕµϕWϕ
∗
νµ

+ gϕeϕWϕ
∗
νe

, (7.56)

where ϕµ,e,νµ,νe must be complex scalars for them to have corresponding antiparticle. For

these fields, we define ϕx̄ ≡ ϕ∗
x.

(b)

iM = (ig)
i

k2 −m2
W

(ig), (7.57)

where k = pµ − pνµ is the four-momentum of the intermediate W boson. Then,

|M|2 = g4

(k2 −m2
W )2

=
g4

m4
W

1(
k
2

m
2
W

− 1
)2

≈ g4

m4
W

,
k2

m2
W

≪ 1.

(7.58)

In the rest frame of the muon:

pµ = (mµ, 0), (7.59)

pνµ = (Eνµ , p⃗νµ), (7.60)

where Eνµ = |p⃗νµ | since we treat the neutrino as massless.1 We then observe

k2 = (pµ − pνµ)
2 = mµ(mµ − 2Eνµ). (7.61)

Note that Eνµ < mµ/2, otherwise energy and momentum conservation would be violated.

Therefore, the k
2

m
2
W

≪ 1 holds as long as
m

2
µ

m
2
W

≪ 1.

1Although the problem in part (a) assumes mµ = 0, a massless particle cannot decay, so we must keep mµ

here.
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(c) The dimension of the decay rate Γ is

[Γ] = 1. (7.62)

To ensure that [g] = 0, we must insert a factor of m5
µ to restore the correct mass dimension

of the decay rate. Hence,

Γ =
g4

192π3

m5
µ

m4
W

. (7.63)

(d) Suppose g ∼ e = 0.303. Given that Γ = 1

2.2×10
−6

s
and mµ = 0.105 GeV, we have

mW = g

(
1

192π3

m5
µ

ℏΓ

)1/4

= 88.2 GeV , (7.64)

where I have inserted an ℏ to convert the decay rate into energy units.

(e) By assumption, the coupling strengths are the same, and the τ decay is also mediated by
the W boson. Hence,

Γτ
Γµ

=

(
mτ

mµ

)5

mτ =

(
Γτ
Γµ

)1/5

mµ ≈ 2.5 GeV , (7.65)

where I have plugged in Γ−1
τ = 2.9× 10−13 s.

(f) As

Γ(τ → e−νeντ )

Γtot

= 0.178, (7.66)

we have

mτ =

(
0.178× Γtot

Γµ

)1/5

mµ ≈ 1.77 GeV . (7.67)

(g) As “assumed-to-be” scalars, their decay distributions are isotropic. Moreover, since all the
tree-level decay rates Γtree depend only on the combination g

mW
up to some power, it is not

possible to extract g and mW separately at tree level.

Since e and µ are electrically charged, one approach is to consider NLO corrections involving
photon vertex correction. An example is shown in Eq. (23.38) of the textbook. The decay
width, including the NLO correction from a photon2, takes the form

Γµ ∼ Γµ,tree

[
1 +

α

4π
Fµ

(
mW

mµ

)
+ · · ·

]
, (7.68)

2Since mW is very heavy and g ∼ e by assumption, the leading NLO correction arises from photon vertex
contributions rather than W -mediated corrections.
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where Fµ is a dimensionless form factor. While its precise functional form does not matter
here, it must depend only on the dimensionless ratio mW

mµ
by dimensional analysis, since mW

and mµ are the only relevant energy scales (electron and neutrino masses are neglected).

As the correction term depends solely on mW and not on g, it is in principle possible to
extract mW by comparing the measured decay rate to the tree-level prediction. However,
note that one cannot extract mW by observing only muon decay. The reason is that we
don’t really know the values of g

mW
. What we actually measure is the total decay rate,

which includes both the tree-level contribution and all radiative corrections. Hence, we
can’t properly measure even the ratio itself.

The strategy is to compare the deviation in the muon decay with that in the tau decay,

and to note that the tree-level ratio satisfies
Γτ,tree

Γµ,tree
=
(
mτ

mµ

)5
. We can see

Γτ
Γµ

∼
(
mτ

mµ

)5 1 + α
4π
Fµ

(
mW

mτ

)
+ · · ·

1 + α
4π
Fτ

(
mW

mµ

)
+ · · ·

, (7.69)

of which mW dependence is isolated.

Once a value for mW is extracted from this, it can be substituted back into Eq. (7.68) to
determine g.

Hence, to see the difference in the NLO corrections, one needs to measure both tau and
muon decays with precision better than O

(
α
4π
F
)
.

7.9

(a) The tree-level cross section is proportional to

σ ∝ 1

s
|M|2 ∝ 1

s

∣∣∣∣ i

s−m2 + imΓ

∣∣∣∣2 = 1

s

1

(s−m2)2 +m2Γ2 . (7.70)

(b) The sketch is shown in Fig. 7.5.

(c) Technically, this should not be labeled as the amplitude M, whose mass dimension is
[M] = 0, which is not the case for a propagator.

Im
1

p2 −m2 + iε
=

1

2i

(
1

p2 −m2 + iε
− 1

p2 −m2 − iε

)
=

−ε
(p2 −m2)2 + ε2

,
(7.71)

which vanishes as ε→ 0 unless evaluated on-shell, p2 = m2.

Note if one integrates over p2,∫ ∞

0

dp2
−ε

(p2 −m2)2 + ε2
= −

[
tan−1

(
p2 −m2

ε

)]∞
0

ε→0−−→ −
(π
2
+
π

2

)
= −π. (7.72)
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Fig. 7.5

Since one also has ∫ ∞

0

dp2(−π)δ(p2 −m2) = −π, (7.73)

it follows that

Im
1

p2 −m2 + iε
= −πδ(p2 −m2) . (7.74)

(d) Suppose the interaction term is g
2
ϕψψ. For simplicity, we treat ψ as a scalar. Let the mass

of ϕ beM and the mass of ψ be m. We can describe the loop diagram (excluding the initial
and final lines) using an ”effective” interaction:

p

k − p

p

k

→
p p

. (7.75)

That is

iMloop(p) =
1

2
(ig)2

∫
d4k

(2π)4
i

(k − p)2 −m2 + iε

i

k2 −m2 + iε
→ iΣ(p). (7.76)

We shall also denote the Feynman propagator as ΠF (p) ≡ i

p
2−M2

+iε
. Then, the dressed

propagator iG(p) can be written as a perturbative sum over the ”effective” interaction at
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all orders:

iG(p) =
p

+
p p

+
p p p

+ · · ·

= ΠF (p) + ΠF (p)(iΣ(p))ΠF (p) + ΠF (p)(iΣ(p))ΠF (p)(iΣ(p))ΠF (p) + · · ·

= ΠF (p)
∞∑
n=0

(iΣ(p)ΠF (p))
n

= ΠF (p)
1

1− iΣ(p)ΠF (p)

=
i

p2 −M2 + Σ(p) + iε
.

(7.77)

The Breit-Wigner distribution is then reproduced if one redefines M2 →M2 +ReΣ(p) (as
a spoiler, this is actually the mass renormalization), and identifies ImΣ(p) =MΓ.

(e) The result of part (d) says

ImΣ(p) = ImMloop =MΓBW. (7.78)

What we need to prove is that the width ΓBW appearing in the Breit-Wigner distribution
is exactly the decay rate Γϕ→ψψ. This is actually one of the implications of the optical
theorem. The steps below follow Section 24.1 of the textbook.

From Eq. (6.19), we also have3

ΠF (k) = ΠA(k) +
π

ωk
δ(k0 − ωk), (7.79)

where the advanced propagator is given by

ΠA(k) =
i

2ωk

[
1

k0 − (ωk + iε)
− 1

k0 − (−ωk + iε)

]
. (7.80)

The derivation of part (c) can also be used to show

Im
1

k0 − ωk + iε
= −πδ(k0 − ωk). (7.81)

Plugging this back into the loop expression in Eq. (7.76):

iMloop(p) = −g
2

2

∫
d4k

(2π)4

[
ΠA(k − p) +

π

ωk−p
δ(k0 − p0 − ωk−p)

] [
ΠA(k) +

π

ωk
δ(k0 − ωk)

]
.

(7.82)
The product term ΠA(k − p)ΠA(k) can be dropped because both propagators have poles
located above the real k0 axis. Thus, when performing the k0 integral, one can safely close

3We swapped ”retarded” and ”advanced” here in accordance with the textbook convention.
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the contour in the lower half-plane without enclosing any poles, resulting in a vanishing
contribution.

Similarly, the product of the two δ-functions can be dropped because their arguments
cannot simultaneously vanish. For instance, in the rest frame where p⃗ = 0 so that p0 =M
and ωk−p = ωk, the two delta conditions δ(k0 − ωk) and δ(k0 − p0 − ωk−p) are mutually
exclusive. Therefore, their product has no support.

Thus,

Mloop(p) =
g2

2

∫
d4k

(2π)4

[
iΠA(k − p)

π

ωk
δ(k0 − ωk) +

π

ωk−p
δ(k0 − p0 − ωk−p)iΠA(k)

]
=
g2

2

∫
d4k

(2π)4

[
iΠF (k − p)

π

ωk
δ(k0 − ωk) +

π

ωk−p
δ(k0 − p0 − ωk−p)iΠF (k)

]
,

(7.83)

where we used Eq. (7.79) again, and dropped the product of two delta functions to get the
last line.

Taking the imaginary part. Note that the delta functions are real, so the imaginary part
only comes from iΠF . Using Eq. (7.74), we find

ImMloop(p) =
g2

2

∫
d4k

(2π)4

[
πδ
(
(k − p)2 −m2)

) π
ωk
δ(k0 − ωk) + πδ(k2 −m2)

π

ωk−p
δ(k0 − p0 − ωk−p)

]
.

(7.84)
The second term vanishes since the delta functions cannot be simultaneously satisfied. Now
we use the identity

1

2ωk
δ(k0 − ωk) = δ(k2 −m2)− 1

2ωk
δ(k0 + ωk), (7.85)

and again drop the term δ
(
(k − p)2 −m2)

)
δ(k0 + ωk). We obtain

ImMloop(p) = −g
2

4

∫
d4k

(2π)4
(−2πi)δ

(
(k − p)2 −m2)

)
(−2πi)δ(k0 − ωk). (7.86)

We just derived cutting rules.

Lastly, we change variables by letting k = q2 and k − p = q1, and insert the identity
1 =

∫
d4q1δ

4(p− q1 − q2):

ImMloop(p) =
g2

4

∫
d4q1

(2π)4

∫
d4q2

(2π)4
(2π)6δ(q21 −m2)δ(q22 −m2)δ4(p− q1 − q2). (7.87)

Recall from Eq. (2.36), as shown in Problem 2.6,∫
d4q

(2π)4
2πδ(q2 −m2)θ(q0) =

∫
d3q

(2π)3
1

2ωq
(7.88)
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and note that since p0 > 0, the δ-functions can only have support for q01 > 0 and q02 > 0,
we then have

ImMloop(p) =
g2

4
(2π)4δ4(p− q1 − q2)

∫
d3q1

(2π)3

∫
d3q2

(2π)3
1

2ωq1

1

2ωq2

=
g2

4

∫
dΠLIPS,

(7.89)

where the integral is nothing but the two-body Lorentz-invariant phase space.

On the other hand, the tree-level decay amplitude for ϕ→ ψψ is similar to that in Eq. (7.1).
Using Eq. (5.24) of the textbook, in the rest frame of ϕ, we have

Γϕ→ψψ =
1

2

g2

2M

∫
dΠLIPS, (7.90)

where the factor of 1
2
accounts for the two identical final-state particles ψ.

Comparing Eq. (7.89) with Eq. (7.90), we find

MΓBW = ImΣ = ImMloop =MΓϕ→ψψ . (7.91)

Therefore, the width in the Breit-Wigner resonance distribution is exactly the decay rate.
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Quantum electrodynamics
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Chapter 8

Spin 1 and gauge invariance

8.1

Consider two arbitrary states |ψ⟩ and
∣∣ψ′〉 in Hilbert space. We are interested in determining

the probability of projecting
∣∣ψ′〉 onto |ψ⟩. Suppose the unnormalized P ≡ |

〈
ψ
∣∣ψ′〉 |2 > 1. To

retain a sensible probabilistic interpretation (i.e., P ≤ 1), we can normalize this projection by
the norms of each state. This is valid, as states in Hilbert space are rays rather than vectors.
Thus, we have

P =
|
〈
ψ
∣∣ψ′〉 |2

⟨ψ|ψ⟩
〈
ψ′∣∣ψ′〉 ≤ 1. (8.1)

This, however, implies1

|
〈
ψ
∣∣ψ′〉 |2 ≤ ⟨ψ|ψ⟩

〈
ψ′∣∣ψ′〉 . (8.2)

The left-hand side |
〈
ψ
∣∣ψ′〉 |2 is manifestly non-negative. If the two norms on the right-hand side

had opposite signs, this inequality would be violated. Therefore, consistency requires that both
⟨ψ|ψ⟩ and

〈
ψ′∣∣ψ′〉 be either positive (positive-definite norm) or both negative (negative-definite

norm).

8.2

Tµν =
∂L

∂(∂µAα)
∂νAα − gµνL

= −Fµα∂νAα +
1

4
gµνF

2
αβ .

(8.3)

The energy density ε is

ε = T00 = −F0α∂tAα +
1

4
F 2
αβ

=
1

2
(E⃗2 + B⃗2) + A0∂t(∂µAµ)− A0□A0 + ∂i(A0F0i),

(8.4)

1One might recognize this is simply the Cauchy–Schwarz inequality. However, we refrain from quoting it
outright. This is one of the place where physicists and mathematicians diverge from each others because we
don’t assume the norm

〈
ψ
∣∣ψ′〉 to be positive-definite, while a mathematician would argue a ”norm” is, by

definition, positive-definite, and this problem is mathematically trivial.
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which easily follows by taking the m → 0 limit of Eq. (8.27) in the textbook. The first term
is positive-definite. The second term vanishes under the Lorenz gauge ∂µAµ = 0. The third
term drops out once the equation of motion □A0 = 0 is imposed. Thus, the only possibly non-
positive contribution arises from the last term ∂i(A0F0i), which is a total spatial divergence.
Therefore, we conclude that

ε− ∂i(A0F0i) =
1

2
(E⃗2 + B⃗2) > 0 , (8.5)

and we recognize that Xi = A0F0i .

8.3

The classical Lagrangian for a massive spin-1 particle (i.e., the Proca Lagrangian) with a source
current Jµ is given by

L =
1

4
F 2
µν +

1

2
m2A2

µ − AµJµ (8.6)

Applying the Euler–Lagrange equation yields the equation of motion

□Aµ − ∂µ∂νAν +m2Aµ = Jµ, (8.7)

or in momentum space, [
(−p2 +m2)gµν + pµpν

]
Aν = Jµ. (8.8)

By Lorentz invariance, the propagator must take the general form

Πµν = Agµν +Bpµpν , (8.9)

where A and B are scalar functions that may depend on p2 and m2. Substituting the inversion
Aµ = ΠµνJν back into Eq. (8.8), we have[

(−p2 +m2)gµν + pµpν
]
Aν = Jµ[

(−p2 +m2)gµν + pµpν
]
ΠναJα = Jµ[

(−p2 +m2)gµν + pµpν
]
(Agνα +Bpνpα)Jα = Jµ

[A((−p2 +m2)gµα + pµpα) +B((−p2 +m2)pµpα + p2pµpα)]Jα = Jµ

A(−p2 +m2)gµα + (A+Bm2)pµpα = gµα. (8.10)

Matching coefficients, we have

A(−p2 +m2) = 1, (8.11)

A+Bm2 = 0. (8.12)

Solving this system yields

A =
−1

p2 −m2 (8.13)

B =

1

m
2

p2 −m2 . (8.14)
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Thus, the classical propagator for a massive spin-1 particle takes the form

Πµν = Agµν +Bpµpν =
−gµν +

pµpν

m
2

p2 −m2 . (8.15)

8.4

I would suggest working out Problem 8.5 first before proceeding with this one.
To impose the axial gauge A0 = 0, we can make use of the result in Eq. (8.45), and set the

reference vector to be rµ = (1, 0, 0, 0). This choice ensures Aµ · rµ = 0, which enforces A0 = 0.
The corresponding photon propagator then reads

Π00 =
1

p2
(−1− 1 + 2) = 0,

Π0i = Πi0 =
1

p2

(
−pi
E

+
pi
E

)
= 0,

Πij = Πji =
1

p2

(
δij −

pipj

E2

)
.

(8.16)

To summarize, the photon propagator in axial gauge takes the form

iΠij =
i

p2

(
δij −

pipj

E2

)
. (8.17)

8.5

(a) Let us begin by considering the frame in which the spin-1 particle propagates along the
z-axis, following Eq. (8.68) and Eq. (8.69) of the textbook. Its four-momentum is

pµ = (E, 0, 0, pz), (8.18)

and a suitable choice of polarization basis is

ϵ1µ(p) = (0, 1, 0, 0), ϵ2µ(p) = (0, 0, 1, 0), ϵLµ(p) ≡ ϵ3µ(p) =

(
pz
m
, 0, 0,

E

m

)
. (8.19)

Define a rank-2 tensor to represent the polarization sum, Pµν ≡
∑

i ϵ
i
µϵ
i
ν
2. In this basis, the

only non-vanishing components are

P00 =
∑
i=1,2,3

ϵi0ϵ
i
0 =

p2z

m2 = −1 +
E2

m2 ,

P11 = P22 =
∑
i=1,2,3

ϵi1ϵ
i
1 =

∑
i=1,2,3

ϵi2ϵ
i
2 = 1,

P33 =
∑
i=1,2,3

ϵi3ϵ
i
3 =

E2

m2 = 1 +
p2z

m2 ,

P03 = P30 =
∑
i=1,2,3

ϵi0ϵ
i
3 =

∑
i=1,2,3

ϵi3ϵ
i
0 =

Epz

m2 .

(8.20)

2Note that the outer product of two rank-1 tensors (i.e., vectors) yields a rank-2 tensor.
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By Lorentz invariance, the polarization sum must take the general tensorial form∑
i

ϵiµϵ
i
ν ≡ Pµν = Agµν +Bpµpν , (8.21)

where A and B are scalar functions that can depend on p2 and m2. Since the physical
polarization vectors ϵµ are transverse to the four-momentum pµ, we must have

0 = pµ
∑
i

ϵiµϵ
i
ν = pµPµν = (A+Bm2)pν =⇒ B = −A/m2, (8.22)

where the on-shell condition p2 = m2 has been used for the physical four-momentum.

Comparing the explicit expression in Eq. (8.20) with the general form in Eq. (8.21), we find
the normalization A = −1. Therefore, the physical polarization sum is given by∑

i

ϵiµϵ
i
ν ≡ Pµν = −gµν +

pµpν

m2 . (8.23)

(b) Compared with Eq. (8.15), it is evident that Eq. (8.23) precisely corresponds to its numer-
ator. The propagator is formally defined via the correlation function. Recall the derivation
in Chapter 6.2 of the textbook: for a free scalar field, one obtains

⟨0|T{ϕ0(x1)ϕ0(x2)} |0⟩ =
∫

d4p

(2π)4
i

p2 −m2 + iϵ
eip(x1−x2). (8.24)

For a massive spin-1 particle, following an analogous derivation and employing the field
operator for a massive vector field (cf. Eq. (8.64) of the textbook), one arrives at a similar
result, but with a polarization sum:

⟨0|T{Aµ(x1)Aν(x2)} |0⟩ = i

∫
d4p

(2π)4
eip(x−y)Πµν(p)

=

∫
d4p

(2π)4
i
∑

i ϵ
i
µϵ
i∗
ν

p2 −m2 + iϵ
eip(x1−x2).

(8.25)

This explains why the numerator of the propagator corresponds to the polarization sum.
Note there are no cross terms in the polarization sum, as the polarization vectors basis
are orthogonal to each other by definition. Also, the summation should only include the
physical polarizations.

(c) Start in the frame where the particle propagates along the z-axis, consistent with Eq. (8.77)–
(8.78) of the textbook. In this frame, the four-momentum reads

pµ = (E, 0, 0, E), (8.26)

and the polarization basis vectors are

ϵµ1(p) = (0, 1, 0, 0), ϵµ2(p) = (0, 0, 1, 0), (8.27)
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which result from choosing the reference vector

rµ = (E, 0, 0,−E). (8.28)

These basis vectors clearly satisfy ϵi · r = 0. The only non-vanishing components of the
polarization sum are ∑

i=1,2

ϵi1ϵ
i
1 =

∑
i=1,2

ϵi2ϵ
i
2 = 1. (8.29)

Now, by Lorentz invariance, the general structure of the polarization sum takes the form∑
i=1,2

ϵiµϵ
i
ν = Agµν +Bpµpν + Crµrν +Drµpν + Epµrν , (8.30)

where A,B,C,D,E are scalar functions, potentially dependent on p2 and m2, that remain
to be determined. From the condition ϵi · p = 0, we must have

0 = pµ
∑
i=1,2

ϵiµϵ
i
ν = Apν +Bp2pν + C(r · p)rν +D(r · p)pν + Ep2rν . (8.31)

Grouping the coefficients gives:

pν : A+Bp2 +D(r · p) = 0,

rν : C(r · p) + Ep2 = 0.
(8.32)

Similarly, with 0 = pν
∑

i=1,2 ϵ
i
µϵ
i
ν , we have

pµ : A+Bp2 + E(r · p) = 0,

rµ : C(r · p) +Dp2 = 0.
(8.33)

From these, we deduce D = E. Since the particle is massless (p2 = 0), it follows that
C = 0. Using the condition ϵi · r = 0, we also find:

0 = rµ
∑
i=1,2

ϵiµϵ
i
ν = Arν +B(r · p)pν +Dr2pν +D(r · p)rν . (8.34)

Again, collecting terms:

pν : B(r · p) +Dr2 = 0,

rν : A+D(r · p) = 0.
(8.35)

Solving this linear system yields

B =
Ar2

(r · p)2
, (8.36)

C = 0, (8.37)

D = E = − A

(r · p)
. (8.38)

65



Chapter 8. Spin 1 and gauge invariance

Substituting these back into Eq. (8.30), we now have∑
i=1,2

ϵiµϵ
i
ν = A

[
gµν +

r2

(r · p)2
pµpν −

rµpν + pµrν
r · p

]
. (8.39)

Matching this against Eq. (8.29) determines the normalization A = −1. Therefore,

∑
i=1,2

ϵiµϵ
i
ν = −gµν −

r2

(r · p)2
pµpν +

rµpν + pµrν
r · p

. (8.40)

(d) The condition ϵi·r = 0 is equivalent to Aµ·rµ = 0, so we can adopt an approach analogous to

Eq. (8.98) of the textbook: introduce a gauge-fixing term − 1
2ξ
(Aµ ·rµ)2 into the Lagrangian,

and then derive the equation of motion to verify that it yields the expected form of the
propagator.

Since
∂((Aµ·rµ)

2
)

∂Aν
= 2(Aµ · rµ)rν , with the new term, the equations of motion for Aµ are(

−p2gµν + pµpν −
1

ξ
rµrν

)
Aν = Jµ. (8.41)

To determine the propagator Πµν , we seek an inverse tensor such that Aµ = ΠµνJν . By
Lorentz invariance, the general ansatz for the propagator takes the form

Πµν = Agµν +Bpµpν + Crµrν +Dpµrν + Erµpν . (8.42)

Symmetry under index exchange µ ↔ ν requires E = D . Proceeding similarly as in
Problem 8.3, we have

gµν =

(
−p2gµα + pµpα −

1

ξ
rµrα

)
(Agαν +Bpαpν + Crαrν +Dpαrν +Drαpν)

= −Ap2gµν + Apµpν − A
1

ξ
rµrν −B

1

ξ
rµ(r · p)pν

− Cp2rµrν + Cpµ(p · r)rν − C
1

ξ
r2rµrν

−D
1

ξ
rµ(p · r)rν −Dp2rµpν +Dpµ(p · r)pν −D

1

ξ
rµr

2pν .

(8.43)

Matching coefficients on both sides yields:

gµν : −Ap2 = 1 ⇒ A = − 1

p2

pµpν : A+D(p · r) = 0 ⇒ D = − A

p · r
=

1

p2
1

p · r

rµrν : −A
1

ξ
− Cp2 − C

1

ξ
r2 −D

1

ξ
(p · r) = 0 ⇒ C

(
1

ξ
r2 + p2

)
= 0 ⇒ C = 0

rµpν : −B
1

ξ
(r · p)−Dp2 −D

1

ξ
r2 = 0 ⇒ B = −D

(
p2 +

1

ξ
r2
)

ξ

r · p
= − 1

p2
(ξp2 + r2)

(r · p)2
= − 1

p2
r2

(r · p)2
,

(8.44)
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where in the final line I took the limit ξ → 0 to enforce the condition ϵi · r = 0.

Thus, the photon propagator is given by

iΠµν =
i

p2

[
−gµν −

r2

(r · p)2
pµpν +

rµpν + pµrν
r · p

]
, (8.45)

whose numerator precisely matches Eq. (8.40).

(e) Unlike the photon propagator in the Rξ gauges, this form of propagator contains only
physical states. However, a trade-off is that gauge invariance is no longer manifest. Another
drawback is that, once a reference vector is fixed, the propagator becomes non-covariant
under Lorentz transformations.

Note in the case of QED, the Ward identity ensures that any expression contracted with the
external momentum ultimately vanishes. As a result, physical observables remain gauge-
independent, and calculations using this propagator yield the same results as those obtained

in Feynman–’t Hooft gauge (ξ = 1): iΠµν(p) = −igµν

p
2
+iϵ

.

8.6

Warning: this problem is one of the occasion where the position of indices on a Lorentz-
covariant object does matter.

(a) The symmetry condition for a 4-dimensional matrix eliminates 4(4−1)
2

= 6 degrees of free-
dom.

Then, the transversality conditions kµϵ
(i) µν = 0 impose four independent constraints, re-

moving another 4 degrees of freedom.

Altogether, these remove 4 + 6 = 10 degrees of freedom.

(b) Choose the frame where the contravariant four-momentum is given by kµ = (E, 0, 0, pz).
Its covariant form is then kµ = gµνk

ν = (E, 0, 0,−pz).

A general rank-2 tensor ϵµν can be represented by a matrix M , which admits a unique

decomposition into symmetric and anti-symmetric components: MS = M+M
T

2
and MA =

M−MT

2
. This decomposition respects Lorentz covariance, as Lorentz transformations pre-

serve the (anti-)symmetry structure of tensors. Consequently, the symmetric and anti-
symmetric parts correspond to distinct representations of the Lorentz group and transform
independently.

The anti-symmetric component ϵµνA ≡MA can be parameterized as

ϵµνA ≡MA =


0 a01 a02 a03

−a01 0 a12 a13
−a02 −a12 0 a23
−a03 −a13 −a23 0

 . (8.46)
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Imposing the transverse condition kµϵ
(i) µν
A = 0, we obtain

ν = 0 : a03 = 0,

ν = 1 : Ea01 + pza13 = 0,

ν = 2 : Ea02 + pza23 = 0,

ν = 3 : a03 = 0.

(8.47)

The general anti-symmetric matrix has 6 parameters, and 3 are fixed by the above con-
straints, leaving 6 − 3 = 3 degrees of freedom. Since the anti-symmetric representation
only admits 3 physical modes, it cannot accommodate the polarizations for a massive spin-
2 particle, which has 2J + 1 = 5 states by Wigner classification.

A momentum-dependent orthonormal basis tensors ϵ
(i) µν
A that satisfy the above constraints

can be chosen as

1√
2m


0 pz 0 0

−pz 0 0 −E
0 0 0 0
0 E 0 0

 ,
1√
2m


0 0 pz 0
0 0 0 0

−pz 0 0 −E
0 0 E 0

 ,
1√
2


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 , (8.48)

which satisfy the anti-symmetric and transverse conditions and are properly normalized
via ϵ(i) µνϵ∗(j)µν = δij, where ϵµν = gµαgνβϵ

αβ happens to retain the same form as the original
matrices under the Minkowski metric.

Similarly, the symmetric part, ϵµνS ≡MS, can be parametrized as:

ϵµνS ≡MS =


s00 s01 s02 s03
s01 s11 s12 s13
s02 s12 s22 s23
s03 s13 s23 s33

 . (8.49)

Enforcing the transverse conditions kµϵ
(i) µν
S = 0 leads to:

ν = 0 : Es00 − pzs03 = 0,

ν = 1 : Es01 − pzs13 = 0,

ν = 2 : Es02 − pzs23 = 0,

ν = 3 : Es03 − pzs33 = 0.

(8.50)

A general symmetric matrix requires 10 parameters; the transversality conditions remove
4, leaving 10− 4 = 6 degrees of freedom. To isolate the 5S, we seek a Lorentz-invariant
condition to project out the singlet representation.

Naively, one might try to further decompose MS into a traceless part MS −Tr[MS]I and a
trace-only part proportional to I. However, the traceless condition

∑
µ ϵ

µµ = 0 for a (2, 0)
tensor is not Lorentz-invariant. Hence, this condition can not remove a whole
Lorentz representation. The proper invariant constraint is to demand tracelessness of
the associated (1, 1) tensor ϵµν ≡ ϵµαgαν . This implies that we actually need the condition

ϵµαS gαµ = s00 − s11 − s22 − s33 = 0. (8.51)
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This condition removes one additional dof, reducing the symmetric ”traceless” space to
10− 4− 1 = 5 degrees of freedom, while the ”trace-only” part spans the singlet.

A basis for the symmetric traceless ϵµνS space can be taken as:

ϵµν1 =
1√
2


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 , ϵµν2 =
1√
2


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 ,

ϵµν3 =
1√
2m


0 pz 0 0
pz 0 0 E
0 0 0 0
0 E 0 0

 , ϵµν4 =
1√
2m


0 0 pz 0
0 0 0 0
pz 0 0 E
0 0 E 0

 ,

ϵµν5 =

√
2

3

1

m2


p2z 0 0 pzE

0 −1
2
m2 0 0

0 0 −1
2
m2 0

pzE 0 0 E2

 , (8.52)

each of which satisfies the symmetric, ”traceless”, and transverse conditions, and is properly
normalized.

The trivial singlet ϵµν1 is proportional to the metric tensor gµν but cannot satisfy the trans-
verse condition3.

(c) Since the traceless symmetric, anti-symmetric, and ”trace-only” components only transform
among themselves under Lorentz transformations, each forms an irreducible representation
of the Lorentz group. The previous analysis reveals that the ”traceless” symmetric part has
5 degrees of freedom, corresponding to spin-2; the anti-symmetric part carries 3 degrees of
freedom, corresponding to spin-1; and the trace-only part has a single degree of freedom,
corresponding to spin-0.

Thus, to propagate the physical degrees of freedom of a spin-2 field, the polarization tensor
must obey symmetric, transverse, and ”traceless” conditions.

3More exactly, spin-0 does not have a well-defined notion of polarization.
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Side Remark: What we have done are essentially the decomposition of the Lorentz
group’s irreducible representations into those of the rotation group, reflecting spin:

3⊗ 3 = 5S ⊕ 3A ⊕ 1.

In this sense, a spin-2 particle can be thought of as a ”composite” of two spin-1
particlesa.
Indeed, one can construct the spin-2 polarization basis tensors directly by taking outer
products of spin-1 polarization basis vectors. For instance, using the polarization
basis from Eq. (8.30) and Eq. (8.31) of the textbook:

ϵµ1 = (0, 1, 0, 0), ϵµ2 = (0, 0, 1, 0), ϵµL =
1

m
(pz, 0, 0, E). (8.53)

The spin-2 polarization tensors in Eq. (8.52) can be written as:

ϵµν1 =
1√
2

(
ϵµ1
⊗

ϵν2 + ϵµ2
⊗

ϵν1

)
,

ϵµν2 =
1√
2

(
ϵµ1
⊗

ϵν1 − ϵµ2
⊗

ϵν2

)
,

ϵµν3 =
1√
2

(
ϵµ1
⊗

ϵνL + ϵµL
⊗

ϵν1

)
,

ϵµν4 =
1√
2

(
ϵµ2
⊗

ϵνL + ϵµL
⊗

ϵν2

)
,

ϵµν5 = − 1√
6

(
ϵµ1
⊗

ϵν1 + ϵµ2
⊗

ϵν2 − 2ϵµL
⊗

ϵνL

)
,

(8.54)

where the coefficients are exactly the Clebsch–Gordan coefficients. These are clearly
symmetric under the exchange of the two sides of the outer products. The transverse
conditions follow trivially because the spin-1 polarization basis vectors themselves
obey transversality. Their tracelessness is evident, since the trace of an outer product
of two vectors corresponds to their inner product (with respect to the metric tensor).

aJust suggesting its algebra, not its fundamentality.

(d) The basis for the physical polarization tensor corresponding to a massless spin-2 particle

propagating along kµ = (E, 0, 0, E) are the two tensors ϵµν1,2 appearing on the first line of

Eq. (8.52). The remaining polarization tensors can not be properly normalized anymore,
as their normalization products vanish.

Another way to identify which polarization tensors become ill-defined in the massless limit is
by inspecting Eq. (8.54). Since, for a spin-1 particle, the longitudinal polarization ϵµL → pµ

up to normalization becomes ill-defined in the massless limit and only ϵµν1,2 avoid involving
ϵµL in their outer products, only ϵµν1,2 remain physical in the massless limit.

(e) For a spin-3 field, we embed it into a rank-3 tensor.

We shall impose the symmetric condition. In four-dimensional spacetime, this left with
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(
3 + 4− 1

3

)
= 6!

3!3!
= 20 degrees of freedom.

Next, the transverse condition removes another 10 (since contraction with a four-momentum
vector yields a symmetric rank-2 tensor, which has 10 degrees of freedom).

Finally, the ”traceless” conditions (any contraction over two indices vanishes) remove 3
more degrees of freedom.

Altogether, we are left with 20− 10− 3 = 7 physical degrees of freedom, precisely match-
ing the expected count for a spin-3 field, which according to the Wigner classification has
2J + 1 = 2× 3 + 1 = 7 degrees of freedom.

8.7

Suppose we now have a Lagrangian with a cubic interaction of h and undetermined coefficient
a:

L4 =

(
1 +

1

2
h+

1

8
h2 + ah3

)
ϕ. (8.55)

Under the transformations

hµν → hµν + ∂µπν + ∂νπµ + πα∂αhµν + (∂µπ
α)hαν + (∂νπ

α)hµα, (8.56)

we have
h→ h+ 2∂νπν + πα∂αh+ 2(∂µπ

α)hµα, (8.57)

and
ϕ→ ϕ+ πα∂αϕ. (8.58)

The coefficient a is fixed by requiring cancellation of terms quadratic in h and linear in π.
Thus, we only need to collect terms linear in π and at most O

(
h2
)
. The extra terms compared

with Eq. (8.139) of the textbook are

L4 → L4 +
1

4
hπα(∂αh)ϕ+

1

8
h2πα(∂αϕ) + (∂µπ

α)hµαϕ+
1

2
h(∂µπ

α)hµαϕ+ 6ah2(∂απα)ϕ+ · · ·

= L4 −
1

8
h2(∂απα)ϕ+ (∂µπ

α)hµαϕ+
1

2
h(∂µπ

α)hµαϕ+ 6ah2(∂απα)ϕ+ · · · ,
(8.59)

where · · · contain terms that are O
(
π2
)
or O

(
h3
)
. Requiring cancellation of the h2 terms gives

−1

8
h2(∂απα)ϕ+ 6ah2(∂απα)ϕ = 0 (8.60)

a =
1

48
. (8.61)

The terms (∂µπ
α)hµαϕ and 1

2
h(∂µπ

α)hµαϕ remain because Eq. (8.138) of the textbook does

not include all O
(
h2µν
)
interactions. To fix this, one must also add −1

4
(hµν)

2ϕ, and to obtain

the full set of O
(
h3µν
)
interactions, include additional Lorentz-invariant cubic terms such as

bh(hµν)
2ϕ+ chµνhναhαµϕ,
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To see that explicitly, redo

L′
3 =

(
1 +

1

2
h+

1

8
h2 − 1

4
h2µν

)
ϕ. (8.62)

The transformation Eq. (8.135) and Eq. (8.137) of the textbook are

ϕ→ ϕ+ πν∂νϕ, (8.63)

hµν → hµν + ∂µπν + ∂νπµ + πα∂αhµν . (8.64)

We only write out the additional terms compared to the Eq. (8.139) of the textbook, and are
at most O

(
π1
)
:

L′
3 → L′

3 −
1

4
h2µνπα∂αϕ− 1

2
ϕhµν(∂µπν + ∂νπµ + πα∂αhµν) + · · ·

= L′
3 +

1

2
hµν(∂αhµν)παϕ+

1

4
h2µν(∂απα)ϕ− 1

2
ϕhµν(∂µπν + ∂νπµ + πα∂αhµν) + · · ·

= L′
3 +

1

4
h2µν(∂απα)ϕ− ϕhµν(∂µπν) + · · · ,

(8.65)

where the last step follows from the fact that −1
2
ϕhµν(∂µπν + ∂νπµ) is symmetric with respect

to µ↔ ν. Note that the last term cancels exactly one of the extra term in Eq. (8.59).
To determine b and c, we include higher-order transformations of hµν (cf. Eq. (8.140) of the

textbook). The relevant terms are

L′
4 → L′

4 +
1

4
h2µν(∂απα)ϕ+

1

2
h(∂µπα)hµαϕ− ϕhµν(∂µπα)hαν

+ 2bϕ[hhµν(∂µπν + ∂νπµ) + (∂νπν)h
2
µν ]

+ chµνϕ[hνα(∂απµ + ∂µπα) + (∂νπα + ∂απν)hαµ] + cϕ(∂µπν + ∂νπµ)hναhαµ + · · ·

= L′
4 +

1

4
h2µν(∂απα)ϕ+

1

2
h(∂µπα)hµαϕ− ϕhµν(∂µπα)hαν

+ 2bϕ[2hhµν(∂µπν) + (∂νπν)h
2
µν ] + 2chµνϕ[hνα(∂απµ + ∂µπα)] + 2cϕ(∂µπν)hναhαµ + · · ·

= L′
4 +

1

4
h2µν(∂απα)ϕ+

1

2
h(∂µπα)hµαϕ− ϕhµν(∂µπα)hαν

+ 2bϕ[2hhµν(∂µπν) + (∂νπν)h
2
µν ] + 4chµνϕhνα(∂απµ) + 2cϕ(∂µπν)hναhαµ + · · ·

= L′
4 +

1

4
h2µν(∂απα)ϕ+

1

2
h(∂µπα)hµαϕ− ϕhµν(∂µπα)hαν

+ 2bϕ[2hhµν(∂µπν) + (∂νπν)h
2
µν ] + 6chµνϕhνα(∂απµ) + · · · ,

(8.66)

where I have repeatedly using the symmetric property under indices permutation. Now, we can
observe that choosing

b = −1

8
(8.67)

ensures the cancellation of the terms

1

4
h2µν(∂απα)ϕ+

1

2
h(∂µπα)hµαϕ,
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and choosing

c =
1

6
(8.68)

ensures the cancellation of the term

−ϕhµν(∂µπα)hαν .
Thus the interaction Lagrangian, up to cubic order in hµν , is

L =

(
1 +

1

2
h+

1

8
h2 − 1

4
hµνhµν +

1

48
h3 − 1

8
hhµνhµν +

1

6
hµνhναhαµ +O

(
h4µν
))

ϕ . (8.69)

Now, note that

h ≡ hνν ≡ Tr(h), (8.70)

hµνhµν ≡ Tr
(
h2
)
, (8.71)

hµνhναhαµ ≡ Tr
(
h3
)
, (8.72)

where the h in the trace is a matrix, it should not be confused with hνν
4.

Using the identity

− det
(
gµν
)
= − det

(
ηµν + hµν

)
= e−Tr log(η+h). (8.73)

and expanding for hµν ≪ ηµν (weak-field approximation),

log(η + h) = h− h2

2
+
h3

3
+O

(
h4
)
. (8.74)

Eq. (8.145) of the textbook can be expanded as

L =
√

− det
(
ηµν + hµν

)
ϕ

= exp

[
−1

2

(
Tr(h)− 1

2
Tr
(
h2
)
+

1

3
Tr
(
h3
)
+ Tr

(
O
(
h4
)))]

ϕ

=
√
− det(η)

{
1 +

1

2
Tr(h)− 1

4
Tr
(
h2
)
+

1

6
Tr
(
h3
)

+
1

2!

[(
1

2
Tr(h)

)2

− 2

8
Tr(h) Tr

(
h2
)]

+
1

3!

(
1

2
Tr(h)

)3

+O
(
h4
)}
ϕ

=

[
1 +

1

2
Tr(h) +

1

8
(Tr(h))2 − 1

4
Tr
(
h2
)

+
1

48
(Tr(h))3 − 1

8
Tr(h) Tr

(
h2
)
+

1

6
Tr
(
h3
)
+O

(
h4
)]
ϕ

=

(
1 +

1

2
h+

1

8
h2 − 1

4
hµνhµν +

1

48
h3 − 1

8
hhµνhµν +

1

6
hµνhναhαµ +O

(
h4µν
))

ϕ ,

(8.75)

where in the last line I wrote out the traces explicitly using Einstein summation (cf. Eq. (8.70)–(8.72)).
This matches Eq. (8.69).

4Though unfortunately quite often share the same notation. I believe it should be clear that whenever the
h appears in a Trace or log, I mean it as a matrix.
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8.8

Starting from a totally symmetric rank-3 tensor Zµνα, decompose it as

Zµνα = ZT
µνα + ∂µπνα + ∂νπαµ + ∂απµν , (8.76)

with ∂µZ
T
µνα = 0. A massive spin-3 field has 7 polarizations: 2 in the transverse components

and 5 in the longitudinal components πµν . Since Zµνα is totally symmetric, πµν is symmetric
as well. We further decompose πµν as

πµν = πTµν + ∂µσν + ∂νσµ (8.77)

with ∂µπ
T
µν = 0. Then decompose σµ as

σµ = σTµ + ∂µσ
L, (8.78)

where ∂µσ
T
µ = 0.

The most general dimension-4 kinetic terms one can write for a rank-3 tensor Zµνα are

L = aZµνα□Zµνα+ bZµνα∂µ∂βZνβα+ cZα□Zα+ dZα∂µ∂νZµνα+ eZµ∂µ∂νZν +m
2(xZ2

µνα+ yZ
2
α),

(8.79)
where Zα ≡ Zµµα = Zµαµ = Zαµµ is the partial trace of the tensor. Also,

π = πT + 2∂µσµ = πT + 2□σL, (8.80)

Zα ≡ Zµµα = ZT
α+2∂µπµα+∂απ = ZT

α+2□σα+2∂α∂µσµ+∂απ
T+2□∂ασ

L = ZT
α+∂απ

T+2(□σTα+3□∂ασ
L).

(8.81)
Consider the mass term first:

Z2
µνα = (ZT

µνα + ∂µπνα + ∂νπαµ + ∂απµν)
2

= 4(∂µ∂νσα + ∂µ∂ασν + ∂ν∂ασµ)
2 + · · ·

= 4(∂µ∂νσ
T
α + ∂µ∂ασ

T
ν + ∂ν∂ασ

T
µ + 3∂µ∂ν∂ασ

L)2 + · · ·
= 4(∂µ∂νσ

T
α )

2 + 4(∂µ∂ασ
T
ν )

2 + 4(∂ν∂ασ
T
µ )

2 + 36(∂µ∂ν∂ασ
L)2 + · · ·

= 12σTα□
2σTα − 108σL□3σL + · · · ,

(8.82)

where · · · contain terms with no more than two derivatives. I repeatedly used ∂µπ
T
µν = 0

and ∂µσ
T
µ = 0, and integrated by parts in the last line. Note the extra factor 3!

2!1!
= 3 when

contracting (∂µ∂ν∂ασ
L)2 arises because the tensor is totally symmetric.

Next,

Z2
α = (ZT

α )
2 − πT□πT + 4ZT

α□σ
T
α − 12πT□2σL + 4(□σTα + 3□∂ασ

L)2

= −12πT□2σL + 4(□σTα )
2 + 36(□∂ασ

L)2 + · · ·
= −12πT□2σL + 4σTα□

2σTα − 36σL□3σL + · · · .
(8.83)

Comparing the two mass terms and requiring cancellation of the dangerous four-derivative (or
higher) pieces, {

σTα□
2σTα : m2(12x+ 4y) = 0

σL□3σL : m2(−108x− 36y) = 0
=⇒ y = −3x , (8.84)
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and
−12m2yπT□2σL = 0 =⇒ πT = 0 , (8.85)

for a nontrivial mass term, indicating that πTµν must be traceless, as expected (confirming
Problem 8.6).

Now turn to the other terms. For later use, first compute

∂µZµνα = □πνα + ∂µ∂νπαµ + ∂µ∂απµν

= □πTνα + 2(□∂νσα +□∂ασν + ∂µ∂ν∂ασµ)

= □πTνα + 2(□∂νσ
T
α +□∂ασ

T
ν + 3□∂ν∂ασ

L).

(8.86)

Also,
∂µ∂νZµνα = 2(□2σTα + 3□2∂ασ

L), (8.87)

and
∂µZµ = 6□2σL (8.88)

• Zµνα□Zµνα:

Zµνα□Zµνα = (ZT
µνα + ∂µπνα + ∂νπαµ + ∂απµν)□(ZT

µνα + ∂µπνα + ∂νπαµ + ∂απµν)

= ZT
µνα□Z

T
µνα + (∂µπνα + ∂νπαµ + ∂απµν)□(∂µπνα + ∂νπαµ + ∂απµν)

= ZT
µνα□Z

T
µνα + [∂µπ

T
να + ∂νπ

T
αµ + ∂απ

T
µν + 2(∂µ∂νσα + ∂µ∂ασν + ∂ν∂ασµ)]□[· · · ]

= ZT
µνα□Z

T
µνα − 3πTνα□

2πTνα + [2(∂µ∂νσ
T
α + ∂µ∂ασ

T
ν + ∂ν∂ασ

T
µ + 3∂µ∂ν∂ασ

L)]□[· · · ]
= ZT

µνα□Z
T
µνα − 3πTνα□

2πTνα + 12σTα□
3σTα − 108σL□4σL.

(8.89)

• Zµνα∂µ∂βZνβα:

Zµνα∂µ∂βZνβα = −(∂µZµνα)
2

= −[□πTνα + 2(□∂νσ
T
α +□∂ασ

T
ν + 3□∂ν∂ασ

L)]2

= −πTνα□2πTνα + 8σTα□
3σTα − 36σL□4σL.

(8.90)

• Zα□Zα:

Zα□Zα = [ZT
α + 2(□σTα + 3□∂ασ

L)]□[ZT
α + 2(□σTα + 3□∂ασ

L)]

= ZT
α□Z

T
α + 4ZT

α□
2σTα + 4σTα□

3σTα − 36σL□4σL.
(8.91)

• Zα∂µ∂νZµνα:

Zα∂µ∂νZµνα = 2[ZT
α + 2(□σTα + 3□∂ασ

L)](□2σTα + 3□2∂ασ
L)

= 2ZT
α□

2σTα + 4σTα□
3σTα − 36σL□4σL.

(8.92)

• Zµ∂µ∂νZν :

Zµ∂µ∂νZν = −2(∂µZµ)
2

= −72σL□4σL,
(8.93)

where the extra factor of 2 arises because there are two inequivalent ways to take the
partial traces on the two sides.
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Requiring cancellation of the dangerous four-derivative (or higher) terms,
πTνα□

2πTνα : −3a− b = 0

σTα□
3σTα : 12a+ 8b+ 4c+ 4d = 0

σL□4σL : −108a− 36b− 36c− 36d− 72e = 0

ZT
α□

2σTα : 4c+ 2d = 0

=⇒


b = −3a

c = −3a

d = −2c

c = 2e

. (8.94)

Fix the overall normalization by imposing the equation of motion for ZT
µνα,

(□+m2)ZT
µνα = 0,

and require positive energy. These fix

a =
1

2
, b = −3

2
, c = −3

2
, d = 3, e = −3

4
, x =

1

2
, y = −3

2
. (8.95)

Hence,

L =
1

2
Zµνα□Zµνα −

3

2
Zµνα∂µ∂βZνβα −

3

2
Zα□Zα + 3Zα∂µ∂νZµνα −

3

4
Zµ∂µ∂νZν +

1

2
m2(Z2

µνα − 3Z2
α) .

(8.96)

8.9

As derived in Problem 3.1, Eq. (3.1), the generalized equation of motion for a Lagrangian with
up to two derivatives is

∂L
∂ϕ

− ∂µ

(
∂L

∂(∂µϕ)

)
+ ∂µ∂ν

(
∂L

∂(∂ν∂µϕ)

)
= 0. (8.97)

Starting from the Lagrangian

L = −aϕ□ϕ− bϕ□2ϕ = a(∂µϕ)
2 − b(□ϕ)2, (8.98)

for arbitrary constants a and b. We ignore the mass term, which is a trivial extension. The ill
behavior of such a Lagrangian is already evident from its equation of motion:

□(a+ b□)ϕ = 0 =⇒ a□ϕ = −b□2ϕ. (8.99)

One can repeatedly apply the equation of motion, relating the two-derivative piece of the field
to arbitrarily high derivatives.

We now generalize Noether’s theorem to higher derivatives. Much of the setup follows
Problem 3.1. Under global spacetime translations ϕ(x) → ϕ(x + ξ) with infinitesimal ξν , and
using Eq. (3.1), the on-shell variation of the Lagrangian (for terms up to second derivatives of
ϕ) isfield ϕ is

δL
δξν

= ∂µ

[(
∂L

∂(∂µϕ)

δϕ

δξν

)
+ 2

(
∂L

∂(∂µ∂αϕ)

δ(∂αϕ)

δξν

)
− ∂α

(
∂L

∂(∂µ∂αϕ)

δϕ

δξν

)]
. (8.100)
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Here δϕ
δξ

ν = ∂νϕ and δ(∂αϕ)

δξ
ν = ∂ν∂αϕ.

Since L is itself a scalar under translations, L(x) → L(x+ ξ), we also have

δL
δξν

= ∂νL. (8.101)

Equating the two expressions yields the energy–momentum tensor

Tµν =
∂L

∂(∂µϕ)
∂νϕ+ 2

∂L
∂(∂µ∂αϕ)

∂ν∂αϕ− ∂α

(
∂L

∂(∂µ∂αϕ)
∂νϕ

)
− gµνL (8.102)

Plugging Eq. (8.98) into this,

Tµν = 2a(∂µϕ)(∂νϕ)− 4b(□ϕ)
∂(∂β∂βϕ)

∂(∂µ∂αϕ)
∂ν∂αϕ+ 2b∂α

(
(□ϕ)

∂(∂β∂βϕ)

∂(∂µ∂αϕ)
∂νϕ

)
+ gµν [a(∂βϕ)

2 − b(□ϕ)2]

= 2a(∂µϕ)(∂νϕ)− 4b(□ϕ)gβµgβα∂ν∂αϕ+ 2b∂α
[
(□ϕ)gβµgβα∂νϕ

]
− gµν [a(∂βϕ)

2 − b(□ϕ)2]

= 2a(∂µϕ)(∂νϕ)− 4b(□ϕ)∂ν∂µϕ+ 2b∂µ [(□ϕ)∂νϕ]− gµν [a(∂βϕ)
2 − b(□ϕ)2]

= 2a(∂µϕ)(∂νϕ)− 2b(□ϕ)∂ν∂µϕ+ 2b(∂µ□ϕ)(∂νϕ)− gµν [a(∂βϕ)
2 − b(□ϕ)2].

(8.103)

The energy density is

E = T00

= a
[
(∂tϕ)

2 + (∇ϕ)2
]
+ b
[
−2(□ϕ)(∂2t ϕ) + 2(∂t□ϕ)(∂tϕ) + (□ϕ)2

]
= a

[
(∂tϕ)

2 + (∇ϕ)2
]

+ b
[
−2(∂2t ϕ)

2 + 2(∇2ϕ)(∂2t ϕ) + 2(∂3t ϕ)(∂tϕ)− 2(∂t∇2ϕ)(∂tϕ) + (∂2t ϕ)
2 + (∇2ϕ)2 − 2(∂2t ϕ)(∇2ϕ)

]
= a[(∂tϕ)

2 + (∇ϕ)2] + b[−(∂2t ϕ)
2 + 2(∂3t ϕ)(∂tϕ)− 2(∂t∇2ϕ)(∂tϕ) + (∇2ϕ)2] ,

(8.104)

which contains unavoidable negative contributions. Unlike the case of a spin-1 vector field, a
scalar has no gauge redundancy to impose additional constraints, so the ghost term cannot be
removed.
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Scalar quantum electrodynamics

9.1

We use p1 to denote the momentum of the incoming photon, p2 that of the incoming scalar, p3
that of the outgoing scalar, and p4 that of the outgoing photon.

(a) The s-channel gives

iMs = −ie2 (p1 · ϵ1 + 2p2 · ϵ1)(p4 · ϵ∗4 + 2p3 · ϵ∗4)
p21 + 2p1 · p2

, (9.1)

where we use the fact that the electrons are on-shell. The t-channel gives

iMt = −ie2 (p1 · ϵ1 − 2p3 · ϵ1)(p4 · ϵ∗4 − 2p2 · ϵ∗4)
p21 − 2p1 · p3

(9.2)

Lastly, the seagull vertex gives
iM4 = 2ie2gµνϵ

µ
1ϵ

∗ν
4 (9.3)

To check Ward identity, we replace ϵµ1 with pµ1 and summing all the diagrams, we have

Ms +Mt +M4 = −e2ϵ∗µ4 (p4 + 2p3 + p4 − 2p2 − 2p1)
µ = 0, (9.4)

and the Ward identity is satisfied.

Now using the fact that the physical polarizations of the photon must be orthogonal to the
photon’s momentum, we have p1 · ϵ1 = p4 · ϵ∗4 = 0. Furthermore, in CM frame, we have
p1 = −p2 and p3 = −p4 such that p2 · ϵ1 = p3 · ϵ∗4 = 0. We also know the on-shell photon is
massless such that p21 = p24 = 0. We can thus simplify the matrix element such that

iMtot = iMs + iMt + iM4

= 2ie2
[
(p3 · ϵ1)(p2 · ϵ∗4)

p1 · p3
+ ϵ1 · ϵ∗4

]
(9.5)

(b) In the CM frame, p1 = (E1, 0, 0, E1), p2 = (E2, 0, 0,−E1), p3 = (E2,−E1 sin θ, 0,−E1 cos θ),

and p4 = (E1, E1 sin θ, 0, E1 cos θ), where E2 =
√
E2

1 +m2
ϕ and θ is the angle between the

incoming scalar and the outgoing photon. We also have dσ
d cos θ

= 1
32πs

|M|2
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(c) For ϵinµ polarized in the plane of the scattering, we choose the basis ϵinµ = (0, 1, 0, 0). For

the outgoing polarization, we choose ϵout1∗µ = (0, cos θ, 0,− sin θ), polarized in the plane of

the scattering, and ϵout2∗µ = (0, 0, 1, 0), polarized transverse to the plane of the scattering.

|Min|2 = 4e4
(∣∣∣∣(p3 · ϵin)(p2 · ϵout1∗)p1 · p3

+ ϵin · ϵout1∗
∣∣∣∣2 + ∣∣∣∣(p3 · ϵin)(p2 · ϵout2∗)p1 · p3

+ ϵin · ϵout2∗
∣∣∣∣2
)

= 4e4
(
(E1 sin θ)(−E1 sin θ)

E1E2 + E2
1 cos θ

− cos θ

)2

+ 0

= 4e4
(
E1 + E2 cos θ

E2 + E1 cos θ

)2

(9.6)

(d) For ϵinµ polarized transverse to the plane of the scattering, we choose the basis ϵinµ =
(0, 0, 1, 0). Follow the same calculations as in last part, we have

|Mtransverse|2 = 4e4 (9.7)

(e) Summing up the (c) and (d), we have

|M|2 = 4e4
(
1 + (

E1 + E2 cos θ

E2 + E1 cos θ
)2
)

(9.8)

Doing the replacement from part (a), we have

|M|2 = |Ms|2 + |Mt|2 + |M4|2 +MsM∗
t +MtM∗

s +MsM∗
4 +M4M∗

s +M4M∗
t +MtM∗

4

= e4[
(p1 + 2p2)

2(p4 + 2p3)
2

(2p1 · p2)2
+

(p1 − 2p3)
2(p4 − 2p2)

2

(2p1 · p3)2
+ 16

+ 2
(p1 + 2p2) · (p1 − 2p3)(p4 + 2p3) · (p4 − 2p2)

(2p1 · p2)(−2p1 · p3)
+ 8

(p1 + 2p2) · (p4 + 2p3)

(2p1 · p2)

+ 8
(p1 − 2p3) · (p4 − 2p2)

(−2p1 · p3)
]

= e4[
4E2

2

E2
1

+
4(m2 − E1(E2 + E1 cos θ))

2

E2
1(E2 + E1 cos θ)

2 + 16− 2(E2
1(1− cos θ)− 2(E2

2 − E2
1 cos θ))

2

E2
1(E1 + E2)(E2 + E1 cos θ)

]

− 2(4E2
2 + E2

1(1− 5 cos θ)− 4E1(E1 + E2 cos θ))

E1(E1 + E2)
+

2(4E2
2 + E2

1(1− 5 cos θ)− 4E1(E1 + E2))

E1(E2 + E1 cos θ)

=
e4

E2
1(E2 + E1)

2(E2 + E1 cos θ)
2 (4E

2
1(E1 + E2)

2((E1 + E2 cos θ)
2 + (E2 + E1 cos θ)

2))

=
4e4

(E2 + E1 cos θ)
2 ((E1 + E2 cos θ)

2 + (E2 + E1 cos θ)
2)

(9.9)

This is the same as equation 9.8. Thus, the replacement trick works.

(f) Such replacement trick only works for a Abelian massless spin-1 particle. Also, notice that
to use such replacement, we must include the unphysical polarization as well. This is the
reason why we must do the replacement from part (a).
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(I) (II) (III)

(IV) (V)

Fig. 9.1: O(e4) light-by-light scattering diagrams

9.2

(a) This is a O(e8) diagram. We shall start the counting from O(e4) first since O(e4) is
the lowest order of light-by-light scattering happens. At O(e4), there are the following 5
diagrams listed in Fig. 9.1:

Now let’s consider the diagrams at O(e6). First notice that for each of the photon line,
it’s possible to have the following vacuum polarization correction diagrams shown in Fig.
18.1 (i) and (ii) that each itself is at O(e2). Similarly, for each of the scalar line, we can
attach the correction as Fig. 18.1 (iii), (iv) and (v). For each of the 3-point vertex, we can
attach with the tadpole in Fig. 18.1 (vi), where the shaded dot means a 3-point vertex.
Then, there are also corrections of which a photon line either starts from a scalar line or
a 3-point vertex and ends at either an another scalar line or an another 3-point vertex as
shown in Fig. 18.1 (vii), (viii), and (xi), where the big shaded dot refers to the rest part
of the diagram that we don’t draw and the small shaded dot refers to a 3-point vertex.
Notice for (viii) and (xi), it’s not necessary that the scalar line must start from the same
vertex as the photon line. (viii) should be interpreted as starting from a 3-point-vertex and
ending at a scalar line while (xi) should be interpreted as starting from a 3-point vertex
and ending at another 3-point vertex.

Now we can do the do the counting. Starting from the diagram I. To modify it to order
O(e6), we can do the following modifications: for each of the 4 photon lines, we can either
modify it with diagram (i) or (ii); for each of the 4 scalar lines, we can either modify it with
diagram (iii) or (iv) or (v); for each of the 4 3-point vertexes, we can attach them with the
tadpole diagram (vi); for any two of the 4 scalar lines, we can connect them with a photon
line ((vii)); we can connect anyone of the 4 3-point vertexes to anyone of the 4 scalar lines
with a photon line ((viii)); we can connect any two of the 4 3-point vertexes with a photon
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(i) (ii) (iii)

(iv) (v) (vi)

(vii) (viii) (ix)

Fig. 9.2: O(e2) correction

line ((xi)). We summarize these operations we can do with the diagram I in Eq. (9.10).

4P − (i)/(ii) : 4× 2 = 8,

4S − (iii)(iv)(v) : 4× 3 = 12,

4V − (vi) : 4,

4S − (vii) : C4
2 =

(
4
2

)
=

4!

2!2!
= 6,

4V − (viii)− 4S : 4× 4 = 16,

4V − (xi) : C4
2 =

(
4
2

)
=

4!

2!2!
= 6,

total: 8 + 12 + 4 + 6 + 16 + 6 = 52,

(9.10)

where P refers to a photon line, S refers to a scalar line, and V refers to a 3-point vertex.
We thus conclude that for O(e6) correction from diagram I, there are 52 diagrams at O(e6).
Clearly, the diagram II just flips the final states compared with the diagram I and should
also have 52 diagrams that can have O(e6) correction. For diagram III and IV, we again
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(1) (2)

Fig. 9.3: O(e3) diagrams with 3 external photon lines

can summarize the operations as in Eq. (9.11).

4P − (i)/(ii) : 4× 2 = 8,

3S − (iii)(iv)(v) : 3× 3 = 9,

2V − (vi) : 2,

3S − (vii) : C3
2 =

(
3
2

)
=

3!

2!1!
= 3,

2V − (viii)− 3S : 2× 3 = 6,

2V − (xi) : C2
2 =

(
2
2

)
= 1,

total: 8 + 9 + 2 + 3 + 6 + 1 = 29,

(9.11)

Thus, the diagram III (IV) shall have 29 diagrams with correction at O(e6). For the
diagram V, we summarize the operations in Eq. (9.12).

4P − (i)/(ii) : 4× 2 = 8,

2S − (iii)(iv)(v) : 2× 3 = 6,

0V − (vi) : 0,

2S − (vii) : C2
2 =

(
2
2

)
= 1,

0V − (viii)− 2S : 0,

0V − (xi) : 0.

total: 8 + 6 + 1 = 15,

(9.12)

Thus, the diagram V have 15 diagrams with correction at O(e6). Lastly, there are also
extra diagrams, which can not be gotten from combining an O(e4) diagram with an O(e2)
diagram but from combining two O(e3) diagrams like the ones in Fig. 9.3 and got 4 extra
diagrams at O(e6) as shown in Fig. 9.4.

In total, at O(e6), we have 52× 2 + 29× 2 + 15 + 4 = 181 diagrams.

We can continue this way of counting to O(e8). First, we shall notice the number of lines
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(VI) (VII) (VIII)

(IX)

Fig. 9.4: O(e6) light-by-light scattering diagrams by combining any two O(e3) diagrams in Fig.
9.3.

or 3-point vertexes added by above operations are summarized in Eq. (9.13).

(i) : +2S + 1P + 2V + 0V ′,

(ii) : +1S + 1P + 0V + 1V ′,

(iii) : +2S + 1P + 2V + 0V ′,

(iv) : +1S + 1P + 0V + 1V ′,

(v) : +2S + 1P + 2V + 0V ′,

(vi) : +1S + 1P − 1V + 1V ′,

(vii) : +2S + 1P + 2V + 0V ′,

(viii) : +1S + 1P + 0V + 1V ′,

(xi) : +0S + 1P − 2V + 2V ′.

(9.13)

For completeness, we also denote the number change of 4-point vertex with V ′.

To make the O(e8) out of the O(e6), let’s explore the O(e6) diagrams modified from the
diagram I first. Notice the 4 + 4 + 4 + 6 = 18 diagrams generated by operation I −
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(i)/(iii)/(v)/(vii), can be further corrected as shown in Eq. (9.14):

I−(i)/(iii)/(v)/(vii) [S = 6, P = 5, V = 6, V ′ = 0] followed by (18× · · · ) :
5P − (i) : 5 [S = 8, P = 6, V = 8, V ′ = 0],

5P − (ii) : 5 [S = 7, P = 6, V = 6, V ′ = 0],

6S − (iii)(v) : 6× 2 = 12 [S = 8, P = 6, V = 8, V ′ = 0],

6S − (iv) : 6 [S = 7, P = 6, V = 6, V ′ = 1],

6V − (vi) : 6 [S = 7, P = 6, V = 5, V ′ = 1],

6S − (vii) : C6
2 =

(
6
2

)
=

6!

4!2!
= 15 [S = 8, P = 6, V = 8, V ′ = 0],

6V − (viii)− 6S : 6× 6 = 36 [S = 7, P = 6, V = 6, V ′ = 1],

6V − (xi) : C6
2 =

(
6
2

)
=

6!

4!2!
= 15 [S = 6, P = 6, V = 4, V ′ = 2],

total: 18× (5 + 5 + 12 + 6 + 6 + 15 + 36 + 15) = 1800.

(9.14)

Then, the 4 + 4 + 16 = 24 diagrams generated by operation I − (ii)/(iv)/(viii) can be
further corrected as shown in Eq. (9.15):

I−(ii)/(iv)/(viii) [S = 5, P = 5, V = 4, V ′ = 1] followed by (24× · · · ) :
5P − (i) : 5 [S = 7, P = 6, V = 6, V ′ = 1],

5P − (ii) : 5 [S = 6, P = 6, V = 4, V ′ = 2],

5S − (iii)(v) : 5× 2 = 10 [S = 7, P = 6, V = 6, V ′ = 1],

5S − (iv) : 5 [S = 6, P = 6, V = 4, V ′ = 2],

4V − (vi) : 4 [S = 6, P = 6, V = 3, V ′ = 2],

5S − (vii) : C5
2 =

(
5
2

)
=

5!

3!2!
= 10 [S = 7, P = 6, V = 6, V ′ = 1],

4V − (viii)− 5S : 4× 5 = 20 [S = 6, P = 6, V = 4, V ′ = 2],

4V − (xi) : C4
2 =

(
4
2

)
=

4!

2!2!
= 6 [S = 5, P = 6, V = 2, V ′ = 3],

total: 24× (5 + 5 + 10 + 5 + 4 + 10 + 20 + 6) = 1560.

(9.15)

The 4 diagrams generated by operation I − (vi) can be further corrected as shown in Eq.
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(9.16):

I−(vi) [S = 5, P = 5, V = 3, V ′ = 1] followed by (4× · · · ) :
5P − (i) : 5 [S = 7, P = 6, V = 5, V ′ = 1],

5P − (ii) : 5 [S = 6, P = 6, V = 3, V ′ = 2],

5S − (iii)(v) : 5× 2 = 10 [S = 7, P = 6, V = 5, V ′ = 1],

5S − (iv) : 5 [S = 6, P = 6, V = 3, V ′ = 2],

3V − (vi) : 3 [S = 6, P = 6, V = 2, V ′ = 2],

5S − (vii) : C5
2 =

(
5
2

)
=

5!

3!2!
= 10 [S = 7, P = 6, V = 5, V ′ = 1],

3V − (viii)− 5S : 3× 5 = 15 [S = 6, P = 6, V = 5, V ′ = 2],

3V − (xi) : C3
2 =

(
3
2

)
=

3!

2!1!
= 3 [S = 5, P = 6, V = 1, V ′ = 3],

total: 4× (5 + 5 + 10 + 5 + 3 + 10 + 15 + 3) = 224.

(9.16)

The 6 diagrams generated by operation I − (xi) can be further corrected as shown in Eq.
(9.17):

I−(xi) [S = 4, P = 5, V = 2, V ′ = 2] followed by (6× · · · ) :
5P − (i) : 5 [S = 6, P = 6, V = 4, V ′ = 2],

5P − (ii) : 5 [S = 5, P = 6, V = 2, V ′ = 3],

4S − (iii)(v) : 4× 2 = 8 [S = 6, P = 6, V = 4, V ′ = 2],

4S − (iv) : 4 [S = 5, P = 6, V = 2, V ′ = 3],

2V − (vi) : 2 [S = 5, P = 6, V = 1, V ′ = 3],

4S − (vii) : C4
2 =

(
4
2

)
=

4!

2!2!
= 6 [S = 6, P = 6, V = 4, V ′ = 2],

2V − (viii)− 4S : 2× 4 = 8 [S = 5, P = 6, V = 4, V ′ = 3],

2V − (xi) : C2
2 = 1 [S = 4, P = 6, V = 0, V ′ = 4],

total: 6× (5 + 5 + 8 + 4 + 2 + 6 + 8 + 1) = 234.

(9.17)

Therefore, the number of O(e8) diagrams that can be gotten by correction on diagram I
(II) is 1800 + 1560 + 224 + 234 = 3818.

Similarly, we can apply the operation on type III and IV diagrams. The 4+3+3+3 = 13
diagrams generated by operation III−(i)/(iii)/(v)/(vii), can be further corrected as shown
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in Eq. (9.18):

III−(i)/(iii)/(v)/(vii) [S = 5, P = 5, V = 4, V ′ = 1] followed by (13× · · · ) :
5P − (i) : 5 [S = 7, P = 6, V = 6, V ′ = 1],

5P − (ii) : 5 [S = 6, P = 6, V = 4, V ′ = 1],

5S − (iii)(v) : 5× 2 = 10 [S = 7, P = 6, V = 6, V ′ = 1],

5S − (iv) : 5 [S = 6, P = 6, V = 4, V ′ = 2],

4V − (vi) : 4 [S = 6, P = 6, V = 3, V ′ = 2],

5S − (vii) : C5
2 =

(
5
2

)
=

5!

3!2!
= 10 [S = 7, P = 6, V = 6, V ′ = 1],

4V − (viii)− 5S : 4× 5 = 20 [S = 6, P = 6, V = 4, V ′ = 2],

4V − (xi) : C4
2 =

(
4
2

)
=

4!

2!2!
= 6 [S = 5, P = 6, V = 2, V ′ = 3],

total: 13× (5 + 5 + 10 + 5 + 4 + 10 + 20 + 6) = 845.

(9.18)

Then, the 4 + 3 + 6 = 13 diagrams generated by operation III − (ii)/(iv)/(viii) can be
further corrected as shown in Eq. (9.19):

III−(ii)/(iv)/(viii) [S = 4, P = 5, V = 2, V ′ = 2] followed by (13× · · · ) :
5P − (i) : 5 [S = 6, P = 6, V = 4, V ′ = 2],

5P − (ii) : 5 [S = 5, P = 6, V = 2, V ′ = 3],

4S − (iii)(v) : 4× 2 = 8 [S = 6, P = 6, V = 4, V ′ = 2],

4S − (iv) : 4 [S = 5, P = 6, V = 2, V ′ = 3],

2V − (vi) : 2 [S = 5, P = 6, V = 1, V ′ = 3],

4S − (vii) : C4
2 =

(
4
2

)
=

4!

2!2!
= 6 [S = 6, P = 6, V = 4, V ′ = 2],

2V − (viii)− 4S : 2× 4 = 8 [S = 5, P = 6, V = 2, V ′ = 3],

2V − (xi) : C2
2 = 1 [S = 4, P = 6, V = 0, V ′ = 4],

total: 13× (5 + 5 + 8 + 4 + 2 + 6 + 8 + 1) = 507.

(9.19)

The 2 diagrams generated by operation III− (vi) can be further corrected as shown in Eq.
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(9.20):

III−(vi) [S = 4, P = 5, V = 1, V ′ = 2] followed by (2× · · · ) :
5P − (i) : 5 [S = 6, P = 6, V = 3, V ′ = 2],

5P − (ii) : 5 [S = 5, P = 6, V = 1, V ′ = 3],

4S − (iii)(v) : 4× 2 = 8 [S = 6, P = 6, V = 3, V ′ = 2],

4S − (iv) : 4 [S = 5, P = 6, V = 1, V ′ = 3],

1V − (vi) : 1 [S = 5, P = 6, V = 0, V ′ = 3],

4S − (vii) : C4
2 =

(
4
2

)
=

4!

2!2!
= 6 [S = 6, P = 6, V = 3, V ′ = 2],

1V − (viii)− 4S : 1× 4 = 4 [S = 5, P = 6, V = 3, V ′ = 3],

1V − (xi) : 0,

total: 4× (5 + 5 + 8 + 4 + 1 + 6 + 4 + 0) = 132.

(9.20)

The 1 diagrams generated by operation III− (xi) can be further corrected as shown in Eq.
(9.21):

III−(xi) [S = 3, P = 5, V = 0, V ′ = 3] followed by (1× · · · ) :
5P − (i) : 5 [S = 5, P = 6, V = 2, V ′ = 3],

5P − (ii) : 5 [S = 4, P = 6, V = 0, V ′ = 4],

3S − (iii)(v) : 3× 2 = 6 [S = 5, P = 6, V = 2, V ′ = 3],

3S − (iv) : 3 [S = 4, P = 6, V = 0, V ′ = 4],

0V − (vi) : 0,

3S − (vii) : C3
2 =

(
3
2

)
=

3!

2!1!
= 3 [S = 5, P = 6, V = 2, V ′ = 3],

0V − (viii)− 3S : 0,

0V − (xi) : 0,

total: 1× (5 + 5 + 6 + 3 + 0 + 3 + 0 + 0) = 22.

(9.21)

Therefore, the number of O(e8) diagrams that can be gotten by correction on diagram III
(IV ) is 845 + 507 + 132 + 22 = 1506.

Next, we can apply the operation on type V diagram. The 4 + 2 + 2 + 1 = 9 diagrams
generated by operation V − (i)/(iii)/(v)/(vii), can be further corrected as shown in Eq.
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(9.22):

V−(i)/(iii)/(v)/(vii) [S = 4, P = 5, V = 2, V ′ = 2] followed by (9× · · · ) :
5P − (i) : 5 [S = 6, P = 6, V = 4, V ′ = 2],

5P − (ii) : 5 [S = 5, P = 6, V = 2, V ′ = 2],

4S − (iii)(v) : 4× 2 = 8 [S = 6, P = 6, V = 4, V ′ = 2],

4S − (iv) : 4 [S = 5, P = 6, V = 2, V ′ = 3],

2V − (vi) : 2 [S = 5, P = 6, V = 1, V ′ = 3],

4S − (vii) : C4
2 =

(
4
2

)
=

4!

2!2!
= 6 [S = 6, P = 6, V = 4, V ′ = 2],

2V − (viii)− 4S : 2× 4 = 8 [S = 5, P = 6, V = 2, V ′ = 3],

2V − (xi) : C2
2 = 1 [S = 4, P = 6, V = 0, V ′ = 4],

total: 9× (5 + 5 + 8 + 4 + 2 + 6 + 8 + 1) = 351.

(9.22)

Then, the 4+2+0 = 6 diagrams generated by operation V − (ii)/(iv)/(viii) can be further
corrected as shown in Eq. (9.23):

V−(ii)/(iv)/(viii) [S = 3, P = 5, V = 0, V ′ = 3] followed by (6× · · · ) :
5P − (i) : 5 [S = 5, P = 6, V = 2, V ′ = 3],

5P − (ii) : 5 [S = 4, P = 6, V = 0, V ′ = 4],

3S − (iii)(v) : 3× 2 = 6 [S = 5, P = 6, V = 2, V ′ = 3],

3S − (iv) : 3 [S = 4, P = 6, V = 0, V ′ = 4],

0V − (vi) : 0,

3S − (vii) : C3
2 =

(
3
2

)
=

3!

2!1!
= 3 [S = 5, P = 6, V = 2, V ′ = 3],

0V − (viii)− 3S : 0,

0V − (xi) : 0,

total: 6× (5 + 5 + 6 + 3 + 0 + 3 + 0 + 0) = 132.

(9.23)

No diagrams can be generated by operation V − (vi).

No diagrams can be generated by operation V − (xi).

Therefore, the number of O(e8) diagrams that can be gotten by correction on diagram V
is 351 + 132 = 483.

Next, we can apply the operation on type V I diagram. The diagrams generated by adding
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operation onto V I are listed in Eq. (9.24):

V I [S = 6, P = 5, V = 6, V ′ = 0] followed by (1× · · · ) :
5P − (i) : 5 [S = 8, P = 6, V = 8, V ′ = 0],

5P − (ii) : 5 [S = 7, P = 6, V = 6, V ′ = 1],

6S − (iii)(v) : 6× 2 = 12 [S = 8, P = 6, V = 8, V ′ = 0],

6S − (iv) : 6 [S = 7, P = 6, V = 6, V ′ = 1],

6V − (vi) : 6 [S = 7, P = 6, V = 5, V ′ = 1],

6S − (vii) : C6
2 =

(
6
2

)
=

6!

4!2!
= 15 [S = 8, P = 6, V = 8, V ′ = 0],

6V − (viii)− 6S : 6× 6 = 36 [S = 7, P = 6, V = 6, V ′ = 1],

6V − (xi) : C6
2 =

(
6
2

)
=

6!

4!2!
= 15 [S = 6, P = 6, V = 4, V ′ = 2],

total: 1× (5 + 5 + 12 + 6 + 6 + 16 + 36 + 15) = 101.

(9.24)

Therefore, the number of O(e8) diagrams that can be gotten by correction on diagram V I
is 101.

Next, we can apply the operation on type V II diagram. The diagrams generated by adding
operation onto V II are listed in Eq. (9.25):

V II [S = 4, P = 5, V = 2, V ′ = 2] followed by (1× · · · ) :
5P − (i) : 5 [S = 6, P = 6, V = 4, V ′ = 2],

5P − (ii) : 5 [S = 5, P = 6, V = 2, V ′ = 3],

4S − (iii)(v) : 4× 2 = 8 [S = 6, P = 6, V = 4, V ′ = 2],

4S − (iv) : 4 [S = 5, P = 6, V = 2, V ′ = 3],

2V − (vi) : 2 [S = 5, P = 6, V = 1, V ′ = 3],

4S − (vii) : C4
2 =

(
4
2

)
=

4!

2!2!
= 6 [S = 6, P = 6, V = 4, V ′ = 2],

2V − (viii)− 4S : 2× 4 = 8 [S = 5, P = 6, V = 2, V ′ = 3],

2V − (xi) : C2
2 = 1 [S = 4, P = 6, V = 0, V ′ = 4],

total: 1× (5 + 5 + 8 + 4 + 2 + 6 + 8 + 1) = 39.

(9.25)

Therefore, the number of O(e8) diagrams that can be gotten by correction on diagram V II
is 39.

Lastly, we can apply the operation on type V III (IX) diagram. The diagrams generated
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by adding operation onto them are listed in Eq. (9.26):

V III [S = 5, P = 5, V = 4, V ′ = 1] followed by (1× · · · ) :
5P − (i) : 5 [S = 7, P = 6, V = 6, V ′ = 1],

5P − (ii) : 5 [S = 6, P = 6, V = 4, V ′ = 2],

5S − (iii)(v) : 5× 2 = 10 [S = 7, P = 6, V = 6, V ′ = 1],

5S − (iv) : 5 [S = 6, P = 6, V = 4, V ′ = 2],

4V − (vi) : 4 [S = 6, P = 6, V = 3, V ′ = 2],

5S − (vii) : C5
2 =

(
5
2

)
=

5!

3!2!
= 10 [S = 7, P = 6, V = 6, V ′ = 1],

4V − (viii)− 5S : 4× 5 = 20 [S = 6, P = 6, V = 4, V ′ = 2],

4V − (xi) : C4
2 =

(
4
2

)
=

4!

2!2!
= 6 [S = 5, P = 6, V = 2, V ′ = 3],

total: 1× (5 + 5 + 10 + 5 + 4 + 10 + 20 + 6) = 65.

(9.26)

Therefore, the number of O(e8) diagrams that can be gotten by correction on diagram
V III (IX) is 65.

At O(e8) in total, we have 3818× 2+1506× 2+483+101+39+65× 2 = 11401 diagrams.
By the way, the diagram shown in the Eq. (9.68) of the book can be gotten by operation
(vii) onto the diagram V I.

(b) Gauge invariance means the diagram should be independent of the gauge choice ξ variable
in the photon propagator. There are two internal photon propagators in the graph. One
can effectively treat this diagram as the t-channel diagrams as Eq. (9.41) of the book.
Thus, the diagram is gauge invariant when also include the diagram with the photon lines
like a u-channel diagrams and the 4-point vertex like the Eq. (9.43) of the book. The only
subtle point however is now one can no longer treat the scalar as on-shell because they are
internal lines. To show the gauge-dependent part of the diagrams still cancel out, we can
write out the integral like the Eq. (9.44) of the book but don’t impose the on-shellness of
the scalar particle.

Mt+Mu +M4 = e2
∫

d4p1

(2π)4
d4p2

(2π)4
d4q

(2π)4
d4k

(2π)4
(2π)4δ4(p1 + p2 − k − q)

1

p21 −m2

1

p22 −m2

×
[
(qµ − 2pµ1)(k

ν − 2pν2)

(q − p1)
2 −m2 +

(qµ − 2pµ2)(k
ν − 2pν1)

(q − p2)
2 −m2 + 2gµν

]
Πµα(q)Πνβ(k)Xαβ(q, k).

(9.27)

Now, if we replace Πµα(q) → ξqµqα, throwing the parts vanish due to the momentum
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conservation, we’re left with

Mt+Mu +M4 → e2
∫

d4p1

(2π)4
d4p2

(2π)4
d4q

(2π)4
d4k

(2π)4
(2π)4δ4(p1 + p2 − k − q)

1

p21 −m2

1

p22 −m2

×
[
(−p21 +m2)(kν − 2pν2)

(q − p1)
2 −m2 +

(−p22 +m2)(kν − 2pν1)

(q − p2)
2 −m2

]
Πνβ(k)Xαβ(q, k)

= e2
∫

d4p1

(2π)4
d4p2

(2π)4
d4q

(2π)4
d4k

(2π)4
(2π)4δ4(p1 + p2 − k − q)

×
[

(−kν + 2pν2)

((q − p1)
2 −m2)(p22 −m2)

+
(−kν + 2pν1)

((q − p2)
2 −m2)(p21 −m2)

]
Πνβ(k)Xαβ(q, k)

= e2
∫

d4p1

(2π)4
d4p2

(2π)4
d4q

(2π)4
d4k

(2π)4
(2π)4δ4(p1 + p2 − k − q)

×
[

(−kν + 2pν2 − 2qν)

(p21 −m2)((p2 − q)2 −m2)
+

(−kν + 2pν1)

((q − p2)
2 −m2)(p21 −m2)

]
Πνβ(k)Xαβ(q, k)

= e2
∫

d4p1

(2π)4
d4p2

(2π)4
d4q

(2π)4
d4k

(2π)4
(2π)4δ4(p1 + p2 − k − q)

[
(−2kν + 2pν2 − 2qν + 2p1)

(p21 −m2)((p2 − q)2 −m2)

]
Πνβ(k)Xαβ(q, k)

= 0

(9.28)

where to get the third to last line, we simultaneously linear shift the dummy momentum
p1 → p1 + q and p2 → p2 − q in the first integral. The next to last line clearly vanishes
because of the momentum conservation.
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Spinors

10.1

(a) Starting from the Dirac equation with covariant derivative,

iγµ(∂µ + ieAµ)ψ = mψ

i∂tψ = iγ0γi∂iψ − γ0γiAi +mγ0ψ + eA0ψ

= (γ0γi(i∂i − Ai) +mγ0 + eA0)ψ,

(10.1)

where we multiply γ0 from left on the second line. We can then identify HD = γ0γi(−pi −
Ai) +mγ0 + eA0.

(b) Doing the minimal substitution pi → pi + eAi in HD, we have

(HD − eA0)
2 = (γ0γi(pi + eAi)−mγ0)2

= m2 −m(γ0γ0γi + γ0γiγ0) + γ0γiγ0γj(pi + eAi)(pj + eAj)

= m2 − 0− γiγj(pi + eAi)(pj + eAj)

= m2 − 1

2
(
{
γi, γj

}
+
[
γi, γj

]
)(pi + eAi)(pj + eAj)

= m2 − 1

2
(−2δij − 2iσij)(pi + eAi)(pj + eAj)

= (m2 + (p⃗+ eA⃗)2)I+ eB⃗ · σ⃗,

(10.2)

where we used the results of eq.(10.103) - eq.(10.109) from the book in the last line. Put
back the factor of c and ℏ, we arrive at

(HD − eA0)
2 = (m2c4 + (p⃗c+ eA⃗)2)I+ eℏB⃗ · σ⃗ (10.3)

(c) Taking the square root and subtracting off mc2, we have

[
(m2c4 + (p⃗c+ eA⃗)2)I+ eℏB⃗ · σ⃗

] 1
2 −mc2 = mc2

[
I+

(p⃗c+ eA⃗)2

m2c4
I+

eℏ
m2c4

B⃗ · σ⃗

] 1
2

−mc2

≈ (p⃗c+ eA⃗)2

2mc2
I+

eℏ
2mc2

B⃗ · σ⃗ + . . .

(10.4)
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(d) [
Si, Sj

]
=

1

4

[
σi, σj

]
=

1

4
· 2iϵijkσk = iϵijkSk (10.5)

[
Li, Lj

]
=
[
ϵiklxkpl, ϵjmnxmpn

]
= ϵiklϵjmn(xkplxmpn − xmpnxkpl)

= −iϵiklϵjmn(xkδlmpn − xmδnkpl)

= −i(δkjδin − δknδij)xkpn + i(δimδlj − δijδlm)xmpl

= −ixjpi + ix · pδij + ixipj − iδijx · p
= i(xipj − xjpi)

(10.6)

On the other hand,

iϵijkLk = iϵijkϵklmxlpm = i(δilδjm − δimδjl)xlpm = i(xipj − xjpi) (10.7)

Thus,
[
Li, Lj

]
= iϵijkLk. The angular momentum operator Li and the spin operator Si

both satisfy the rotation algebra.

(e) Let

B⃗ =

 0
0
B0

 , (10.8)

such that

A⃗ =
1

2
B0

−y
x
0

 (10.9)

The term that is linear in A⃗ in Eq.(10.4) is

1

2m
(ep⃗ · A⃗+ eA⃗ · p⃗) = e

2m
(pxAx + pyAy + Axpx + Aypy)

=
e

2m

1

2
B0(px(−y) + pyx+ (−y)px + xpy)

=
e

2m
B0(xpy − ypx)

=
e

2m
B0Lz

(10.10)

The spin term in Eq.(10.4) is
e

2m
B⃗ · σ⃗ =

e

2m
B0σ

3 (10.11)

Thus from the entire coupling term,

e

2m
B0(Lz + σ3) =

e

2m
B0(Lz + 2Sz), (10.12)

we can read off ge = 2.
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10.2

(a) First notice [
τ3, τ

±] = [τ3, τ1]± i[τ3, τ2] = iτ2 ± τ1 = ±τ±. (10.13)

Thus,

τ3τ
±Vj = (±τ± + τ±τ3)Vj = τ±(±1 + τ3)Vj = (λj ± 1)τ±Vj. (10.14)

However, since τ3 is an n × n matrix, it can at most have n eigenstates. But the ladder
operators τ± when applying to an eigenstate of τ3 monotonically increasing(decreasing)
the eigenvalue by one unit, there must be at least an eigenstate Vmax(Vmin) that has the
largest(smallest) eigenvalue, which when was acted by τ± should vanish to keep Eq. (10.14)
consistent.

(b) The uniqueness of Vmax comes from the argument in (a) as well as the fact that the rep-
resentation is irreducible. Irreducibility guarantees that each eigenstate must have distinct
eigenvalue.

(c) Notice [
τ+, τ−

]
= −i[τ1, τ2] + i[τ2, τ1] = 2τ3, (10.15)

and {
τ+, τ−

}
= τ+τ− + τ−τ+ = 2τ 21 + 2τ 22 . (10.16)

Also, the Casimir operator is defined to be τ 2i , where Einstein summation is assumed. We
will prove that the Casimir operator commutes with all the generators.

[
τ 2i , τj

]
= τi

[
τi, τj

]
+
[
τi, τj

]
τi = iεijk{τi, τk} = 0, (10.17)

which vanishes because εijk is antisymmetric, but the anticommutator is symmetric. We

can express the Casimir operator as τ 2i = 1
2

{
τ+, τ−

}
+ τ 23 , and this commutes with all the

generators as well as τ±. Acting the Casimir operator on Vmin, we shall get

τ 2i Vmin = (
1

2

{
τ+, τ−

}
+ τ 23 )Vmin

= (
1

2
(τ+τ− + τ−τ+) + τ 23 )Vmin

=
1

2
τ−τ+ + τ 23Vmin

= −1

2

[
τ+, τ−

]
+ τ 23Vmin

= (−τ3 + τ 23 )Vmin

= (j −N)(j −N − 1)Vmin.

(10.18)
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But we could also have

τ 2i Vmin = τ 2i (τ
−)NVmax

= (τ−)Nτ 2i Vmax

= (τ−)N(
1

2

{
τ+, τ−

}
+ τ 23 )Vmax

= (τ−)N(
1

2
(τ+τ− + τ−τ+) + τ 23 )Vmax

= (τ−)N(
1

2
τ+τ− + τ 23 )Vmax

= (τ−)N(
1

2

[
τ+, τ−

]
+ τ 23 )Vmax

= (τ−)N(τ3 + τ 23 )Vmax

= j(1 + j)(τ−)NVmax

= j(1 + j)Vmin.

(10.19)

Equating Eq. (10.18) and Eq. (10.19),

j2 +N2 − 2Nj − j +N = j2 + j

N2 − (2j − 1)N − 2j = 0

N =
(2j − 1)±

√
(2j − 1)2 + 8j

2

N = (j − 1

2
)± (j +

1

2
)

N = 2j,

(10.20)

since N must be a non-negative integer, only the plus sign can be chosen. This also tells
us j must either be a positive half integer or positive integer.

(d) For n = 5, j = 2, and N = 4. We thus know that in the basis that diagonalizes τ3, the 5
distinct eigenvalues of τ3 are 2, 1, 0,−1,−2. Thus we can write out τ3 in this basis as

τ3 =


2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −2

 . (10.21)

Its ith eigenvector has 1 on the ith entry with all other entries 0. We will explicitly construct
the ladder operator’s representation now. Since τ+(τ−) raises(lowers) the 1 on ith entry
to i+1th(i-1th) entry, while leaving all other entries 0, it’s clear that the τ+(τ−) will only
have non-zero entries right above(below) its diagonal. Therefore, we can write

τ+ =


0 a 0 0 0
0 0 b 0 0
0 0 0 c 0
0 0 0 0 d
0 0 0 0 0

 . (10.22)
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Also, by Schur’s lemma, a group element that commutes with all other group elements
in any irreducible representation must be proportional to I. Since the Casimir operator
commutes with all the generators, it must be proportional to I. From Eq. (10.19), τ 2i =
2(1 + 2)I = 6I. Then,

τ+τ− =
1

2
(
{
τ+, τ−

}
+
[
τ+, τ−

]
) = τ 2i − τ 23 + τ3

=


4 0 0 0 0
0 6 0 0 0
0 0 6 0 0
0 0 0 4 0
0 0 0 0 0

 .
(10.23)

Combining this with Eq. (10.22), and τ− = (τ+)†. We simply have

|a|2 = 4, |b|2 = 6, |c|2 = 6, |d|2 = 4. (10.24)

We have freedom to choose these to be real and arrive at

τ+ =


0 2 0 0 0

0 0
√
6 0 0

0 0 0
√
6 0

0 0 0 0 2
0 0 0 0 0

 , τ− =


0 0 0 0 0
2 0 0 0 0

0
√
6 0 0

0 0
√
6 0 0

0 0 0 2 0

 . (10.25)

Then,

τ1 =
1

2
(τ+ + τ−) =



0 1 0 0 0

1 0
√

3
2

0 0

0
√

3
2

0
√

3
2

0

0 0
√

3
2

0 1

0 0 0 1 0


. (10.26)

and

τ2 =
i

2
(τ− − τ+) =



0 −i 0 0 0

i 0 −i
√

3
2

0 0

0 i
√

3
2

0 −i
√

3
2

0

0 0 i
√

3
2

0 −i
0 0 0 i 0


. (10.27)

10.3

(a) First, the RHS is just
2ϵαβϵα̇β̇ = 2δαα̇δββ̇ − 2δαβ̇δβα̇. (10.28)

We also need the identity
Tr
[
σµσν

]
= 2δµν . (10.29)
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To prove this, we know that since Pauli matrices are all traceless, if either µ = 0 or ν = 0,
the only non-vanishing case is if both µ = ν = 0 and thus, Tr[I] = 2. Now, for µ ̸= 0 and
ν ̸= 0,

Tr
[
σiσj

]
=

1

2
Tr
[{
σi, σj

}
+
[
σi, σj

]]
= δij Tr[I] = 2δij (10.30)

The commutator inside the trace vanishes again because Pauli matrices are traceless. An-
other way to see is because of the cyclic property of trace, the only non-vanishing part is
the symmetric term. Thus, Eq. (10.29) is proved.

Next, notice the Pauli matrices and the identity matrix σ0 form an orthogonal basis for
the Hilbert space of 2 × 2 complex matrices. Thus, any 2 × 2 complex matrix M can be
expressed as

M =
∑
µ

aµσ
µ, (10.31)

for some complex constants aµ. Notice this is a simple sum with no sign difference between
the 0-th component and other components. The aµ can be extracted as

Tr[Mσν ] =
∑
µ

aµTr[σ
µσν ] = 2

∑
µ

aµδ
µν = 2aν , (10.32)

where Eq. (10.29) is used, and then

aµ =
1

2
Tr
[
Mσµ

]
. (10.33)

So
2M =

∑
µ

Tr[Mσµ]σµ (10.34)

or written out with spinor indices,

2Mαα̇ =
∑
µ

σµαα̇Mβ̇βσ
µ

ββ̇

0 =Mβ̇β(
∑
µ

σµαα̇σ
µ

ββ̇
− 2δβα̇δβ̇α).

(10.35)

Since M is an arbitrary matrix, we must have∑
µ

σµαα̇σ
µ

ββ̇
= 2δβα̇δβ̇α. (10.36)

The LHS can then be expressed as

gµνσ
µ
αα̇σ

µ

ββ̇
= 2σ0

αα̇σ
0
ββ̇ −

∑
µ

σµαα̇σ
µ

ββ̇
= 2δαα̇δββ̇ − 2δαβ̇δβα̇, (10.37)

where we used the fact that σ0 is just the identity matrix and also the delta is symmetric
upon indices exchange. This is exactly the Eq. (10.28). Thus, we have proven

gµνσ
µ
αα̇σ

µ

ββ̇
= 2ϵαβϵα̇β̇. (10.38)

(b)

ϵαβϵα̇β̇σ
µββ̇ =

1

2
gδγσ

δ
αα̇σ

γ

ββ̇
σµββ̇ =

1

2
gδγσ

δ
α̇ασ

γ

ββ̇
σµβ̇β =

1

2
gδγσ

δ
α̇αTr[σ

γσµ] = gδγσ
δ
α̇αδ

γµ = σ̄µα̇α,

(10.39)
where we used the result of part (a) and Eq. (10.29).
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10.4

(a) The Lorentz generator is defined by Sµν = i
4
[γµ, γν ] from the Eq. (10.68) of the book. With

the gamma matrices in the Majorana representation given by the Eq. (10.74) of the book,
we can get

J3 = S12 =
i

4

[
γ1, γ2

]
=
i

4

(
0 −i

[
σ3, σ2

]
i
[
σ3, σ2

]
0

)
=
i

2

(
0 −σ1

σ1 0

)
,

J2 = −S13 = − i

4

[
γ1, γ3

]
= − i

4

([
σ3, σ1

]
0

0
[
σ3, σ1

]) =
1

2

(
σ2 0

0 σ2

)
,

J1 = S23 =
i

4

[
γ2, γ3

]
=
i

4

(
0 i

[
σ2, σ1

]
i
[
σ2, σ1

]
0

)
=
i

2

(
0 σ3

−σ3 0

)
,

K1 = S01 =
i

4

[
γ0, γ1

]
=
i

4

(
0 i

[
σ2, σ3

]
i
[
σ2, σ3

]
0

)
=
i

2

(
0 −σ1

−σ1 0

)
,

K2 = S02 =
i

4

[
γ0, γ2

]
=
i

4

({
σ2, σ2

}
0

0 −
{
σ2, σ2

}) =
i

2

(
I 0
0 −I

)
,

K3 = S03 =
i

4

[
γ0, γ3

]
=
i

4

(
0 −i

[
σ2, σ1

]
−i
[
σ2, σ1

]
0

)
=
i

2

(
0 −σ3

−σ3 0

)
.

(10.40)

(b) • Majorana Representation

From above, we have

J⃗2 = (J1)2 + (J2)2 + (J3)2 =
1

4

(
(σ3)2 + (σ2)2 + (σ1)2 0

0 (σ3)2 + (σ2)2 + (σ1)2

)
=

3

4
I,

(10.41)
where we used the fact that σiσj = 1

2

{
σi, σj

}
+ 1

2

[
σi, σj

]
= δij+ϵijkσ

k and so (σi)2 = 1
(no Einstein summation here).

• Left-handed Weyl Representation

From the Eq. (10.73) of the book, we have

J⃗2 = (J1)2 + (J2)2 + (J3)2 =
1

4


1 + 1 + 1

1 + 1 + 1
1 + 1 + 1

1 + 1 + 1

 =
3

4
I.

(10.42)

• 4-vector Representation From the Eq. (10.14) of the book, we have

J⃗2 = (J1)2 + (J2)2 + (J3)2 =


0

2
2

2

 . (10.43)

For spin−s particle, the eigenvalue of J⃗2 is just s(s+ 1). Therefore, the Majorana and the
left-handed Weyl Representation describe a spin-half particle while the 4-vector represen-
tation corresponds to a spin-1 and a spin-0 degree of freedom.
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(c)

γ5 = iγ0γ1γ2γ3 = i

(
σ2σ3σ2σ1 0

0 −σ2σ3σ2σ1

)
= i

(
−(σ3)T (σ2)2σ1 0

0 (σ3)T (σ2)2σ1

)
= i

(
−σ3σ1 0

0 σ3σ1

)
=

(
ϵ312σ

2 0

0 −ϵ312σ2

)
=

(
σ2 0

0 −σ2

)
.

(10.44)
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Spinor solutions and CPT

11.1

(a)

(γ5)2 = (iγ0γ1γ2γ3)2 = −γ0γ1γ2γ3γ0γ1γ2γ3

= γ0γ0γ1γ2γ3γ1γ2γ3 = γ1γ2γ3γ1γ2γ3

= γ1γ1γ2γ3γ2γ3 = −γ2γ3γ2γ3

= −γ3γ3 = I

(11.1)

(b)

γµ/pγ
µ = γµγ

νpνγ
µ = γµpν(2g

νµ − γµγν)

= 2/p− 2gρµγ
ργµ/p

= 2/p−
1

2
(gµα + gαµ)γ

αγµ/p (g is symmetric)

= 2/p−
1

2
(gµαγ

αγµ + gµαγ
µγα)/p (Renaming the indices on the 2nd term in the parentheses)

= 2/p−
1

2
gµα{γα, γµ}/p

= 2/p−
1

2
gµα(2g

µα)/p

= 2/p− 4/p

= −2/p

(11.2)

(c) We will first prove an identity that γµγ
νγαγµ = 4gνα.

γµγ
νγαγµ = γµγ

ν(2gαµ − γµγα)

= 2γαγν + 2γνγα (where we used the result from part b)

= 2{γα, γν}
= 4gαν

(11.3)
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γµ/p/q/pγ
µ = pνqαpβ(γµγ

νγαγβγµ)

= pνqαpβ(γµγ
νγα(2gβµ − γµγβ))

= pνqαpβ(2γ
βγνγα − 4gναγβ), where we used eq.(11.3)

= pνqαpβ(2γ
β(2gνα − γαγν)− 4gναγβ)

= pνqαpβ(−2γβγαγν)

= −2/p/q/p

(11.4)

(d)

{γ5, γµ} = i{γ0γ1γ2γ3, γµ}
= i(γ0γ1γ2γ3γµ + γµγ0γ1γ2γ3)

(11.5)

Each time the γµ anticommutes with a gamma matrix of different index, it introduces a
(−1), and γµ commutes with itself. As µ = 0, 1, 2, 3, if we want to move the γµ in the first
term to the leftmost. It always introduces a (−1)3. We thus arrived

{γ5, γµ} = i(−γµγ0γ1γ2γ3 + γµγ0γ1γ2γ3) = 0 (11.6)

(e) We will first prove an identity that Tr[γµγν ] = 4gµν .

Tr[γµγν ] =
1

2
(Tr[γµγν ] + Tr[γνγµ]) (trace is cyclic)

=
1

2
Tr[γµγν + γνγµ]

=
1

2
Tr[{γµ, γν}]

=
1

2
Tr[2gµν ]

= 4gµν

(11.7)

Tr
[
γαγµγβγν

]
= Tr

[
γαγµ(2gβν − γνγβ)

]
= 2gβν Tr[γαγµ]− Tr

[
γα(2gµν − γνγµ)γβ

]
= 2gβν Tr[γαγµ]− 2gµν Tr

[
γαγβ

]
+ 2gαν Tr

[
γµγβ

]
− Tr

[
γνγαγµγβ

]
= 2gβν Tr[γαγµ]− 2gµν Tr

[
γαγβ

]
+ 2gαν Tr

[
γµγβ

]
− Tr

[
γαγµγβγν

]
= gβν Tr[γαγµ]− gµν Tr

[
γαγβ

]
+ gαν Tr

[
γµγβ

]
= 4gβνgαµ − 4gµνgαβ + 4gανgµβ (eq.(11.7) is used)

(11.8)
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11.2

(a)

∑
s

us(p)ūs(p) =
2∑
s=1

(√
p · σξs√
p · σ̄ξs

)(√
p · σξs√
p · σ̄ξs

)†(
0 1
1 0

)
=

(
p · σ

√
(p · σ)(p · σ̄)√

(p · σ̄)(p · σ) p · σ̄

)(
0 1
1 0

)
=

(√
(p · σ)(p · σ̄) p · σ
p · σ̄

√
(p · σ̄)(p · σ)

)
=

(
m p · σ
p · σ̄ m

)
= /p+m,

(11.9)

where we used the fact that γµ =

(
σµ

σ̄µ

)
in Weyl basis, ξsξ

†
s = I, and

√
(p · σ)(p · σ̄) =√

(p · σ̄)(p · σ) = m. Einstein summation rule is implied. Similarly,

∑
s

vs(p)v̄s(p) =
2∑
s=1

( √
p · σηs

−
√
p · σ̄ηs

)( √
p · σηs

−
√
p · σ̄ηs

)†(
0 1
1 0

)
=

(
p · σ −

√
(p · σ)(p · σ̄)

−
√
(p · σ̄)(p · σ) p · σ̄

)(
0 1
1 0

)
=

(
−
√
(p · σ)(p · σ̄) p · σ
p · σ̄ −

√
(p · σ̄)(p · σ)

)
=

(
−m p · σ
p · σ̄ −m

)
= /p−m.

(11.10)

(b)

ūσ(p)γ
µuσ′(p) =

(√
p · σξσ√
p · σ̄ξσ

)†(
0 1
1 0

)(
0 σµ
σ̄µ 0

)(√
p · σξσ′√
p · σ̄ξσ′

)
=

(√
p · σξσ√
p · σ̄ξσ

)†(
σ̄µ 0
0 σµ

)(√
p · σξσ′√
p · σ̄ξσ′

)
=

(
ξσ
ξσ

)†(
(p · σ)σ̄µ 0

0 (p · σ̄)σµ

)(
ξσ′

ξσ′

)
= 2δσσ′pµ,

(11.11)

where we used the completeness relation of Pauli matrices tr((a · σ)σ̄) = 2a for any 4-vector
a in the last line.
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11.3

The key is to prove the interaction between the massless spin-1 particle and the spin-0 or
spin-1/2 particle in the soft limit has the form p·ϵ

p·q . Then, the derivation just follows what’s in
Section 9.5. Section 9.5 has already proves the general interaction form for spin-0, so we will
just focus on the spin-1/2 case. By the Lorentz invariance, the only new interaction from the
spin-1/2 case that has not yet already covered by the spin-0 case is the one that involves γµ.
Suppose the interaction has the form γµF (p, q), where F is the form factor that in general can
depend on contractions of momenta or on contractions with γ-matrices.

Starting from Eq. (9.46) of the book, for an external leg of spin-1/2 particle of mass m,
when tacked by a soft photon, the amplitude is modified to be

Mi(pi, q) = (−ieFi)ϵµM0(pi − q)
i(/p− /q +m)

(p− q)2 −m2γ
µu(pi)

= −eFiM0(pi − q)
ϵµpνγνγµ − /q/ϵ +m/ϵ

2p · q
u(pi)

= −eFiM0(pi − q)
ϵµpν(2gµν − γµγν)− /q/ϵ +m/ϵ

2p · q
u(pi)

= −eFiM0(pi − q)
2p · ϵ− /q/ϵ − /ϵ(/p−m)

2p · q
u(pi)

≈ −eFi(0)M0(pi)
p · ϵ
p · q

u(pi),

(11.12)

which has the intended interaction form. The derivation then follows exactly as that in Section
9.5. In the second line, we used the on shell conditions for the external spinor and the spin-1
particle. In the third line, we used the anticommutator of the gamma matrices. In the last
line, we took the soft limit. Also the last term vanishes due to the equation of motion of the
external spinor. The second term can be ignored in the sense that once one took the amplitude
square, this term becomes Tr

[
/q/ϵ
]
= 4q · ϵ = 0 by the fact that the polarizations of a physical

photon are transverse to their own momenta.

11.4

First notice that

iū(q)
σµν(qν − pν)

2m
u(p) = −ū(q) [γ

µ, γν ](qν − pν)

4m
u(p)

= −ū(q)(γ
µγν − γνγµ)(qν − pν)

4m
u(p)

= −ū(q)(g
µν − γνγµ)qν − (γµγν − gµν)pν

2m
u(p)

= ū(q)
/qγ

µ + γµ/p− qµ − pµ

2m
u(p),

(11.13)

where we used the anticommutation of gamma matrices on the third line.
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We then can have

ū(q)

[
qµ + pµ

2m
+
/qγ

µ + γµ/p− qµ − pµ

2m

]
u(p) = ū(q)

/qγ
µ + γµ/p

2m
u(p)

= ū(q)
mγµ + γµm

2m
u(p)

= ū(q)γµu(p),

(11.14)

where we used the equation of motions for the spinor since they are on-shell, namely /pu(p) =
mu(p) and ū(q)/q = ū(q)m.

11.5

For a general Dirac matrix combination transformation Γ, we have a general spinor bilinear
charge conjugation transformation as

C : ψ̄Γψ −→ (−iγ2ψ)Tγ0Γ(−iγ2ψ∗) = −ψTγ2γ0Γγ2ψ∗

= −ψα(γ2γ0Γγ2)αβψ∗
β (where α, β are spinor indices)

= ψ∗
α(γ2γ0Γγ2)βαψβ (anticommuting the spinors and relabeling α −→ β)

= γ∗(γ2γ0Γγ2)
Tψ

= γ∗γ0γ0(γ2γ0Γγ2)
Tψ (γ0γ0 = I)

= ψ̄γ0γ2Γ
Tγ0γ2ψ (γT0,2 = γ0,2).

(11.15)

• For Eq. (11.54), Γ = γ5:

γ0γ2(γ
5)Tγ0γ2 = (−1)2γ2γ

5γ2 = (−1)3(γ2)
2γ5 = (−1)4γ5 = γ5. (11.16)

Thus, C : iψ̄γ5ψ −→ iψ̄γ5ψ.

• For Eq. (11.55), Γ = γ5γµ:

γ0γ2(γ
5γµ)Tγ0γ2 = γ0γ2(γ

µ)Tγ5γ0γ2. (11.17)

For µ = 0, 2,

γ0γ2(γ
µ)Tγ5γ0γ2 = γ0γ2γ

µγ5γ0γ2 = (−1)2γ0γ2γ
µγ0γ2γ

5 = (−1)3γ0γ2γ0γ2γ
µγ5 = (−1)5γµγ5 = γ5γµ.

(11.18)
For µ = 1, 3,

γ0γ2(γ
µ)Tγ5γ0γ2 = −γ0γ2γµγ5γ0γ2 = (−1)5γ0γ2γ0γ2γ

µγ5 = (−1)7γµγ5 = γ5γµ. (11.19)

Thus, C : iψ̄γ5γµψ −→ iψ̄γ5γµψ.

• For Eq. (11.56), Γ = σµν :

γ0γ2(σ
µν)Tγ0γ2 = −γ0γ2

[
γµT , γνT

]
γ0γ2. (11.20)
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Notice for µ = ν, σµν = 0, and result holds trivially.

For µ = 0 and ν = 2 or µ = 2 and ν = 0,

−γ0γ2
[
γµT , γνT

]
γ0γ2 = −γ0γ2[γµ, γν ]γ0γ2 = (−1)3γ0γ2γ0γ2[γ

µ, γν ] = (−1)5[γµ, γν ] = −[γµ, γν ].

(11.21)

For µ = 0, 2 and ν = 1, 3 or µ = 1, 3 and ν = 0, 2,

−γ0γ2
[
γµT , γνT

]
γ0γ2 = (−1)2γ0γ2[γ

µ, γν ]γ0γ2 = (−1)5γ0γ2γ0γ2[γ
µ, γν ] = (−1)7[γµ, γν ] = −[γµ, γν ].

(11.22)

Thus, C : ψ̄σµνψ −→ −ψ̄σµνψ.

11.6

(a) First notice that as a projection operator, P 2
L/R = PL/R, PL/RPR/L = 0, and PL + PR = 1.

Also, P †
L/R = PL/R since γ5† = γ5, and γµPL/R = γµ 1∓γ5

2
= 1±γ5

2
γµ = PR/Lγ

µ, where we

have used
{
γ5, γµ

}
= 0. Then,

ψ̄γµψ = ψ†γ0γ
µ(PL + PR)ψ

= ψ†γ0γ
µ(P 2

L + P 2
R)ψ

= ψ†γ0PRγ
µPLψ + ψ†γ0PLγ

µPRψ

= ψ†PLγ0γ
µPLψ + ψ†PRγ0γ

µPRψ

= (PLψ)
†γ0γ

µPLψ + (PRψ)
†γ0γ

µPRψ

= ψ̄Lγ
µψL + ψ̄Rγ

µψR.

(11.23)

This tells us that the QED vertex conserves chirality.

(b) From Eq. (11.25) of the book,

us =

(√
p · σξs√
p · σ̄ξs

)
=

√
m

(
ξs
ξs

)
, vs =

(√
p · σηs√
p · σ̄ηs

)
=

√
m

(
ηs
ηs

)
, (11.24)

where we used the fact that in the rest limit,
√
p · σ =

√
p · σ̄ =

√
mI.

With the Dirac matrices under Weyl representation from Eq. (10.64) of the book,

γ0γi =

(
−σi

σi

)
, (11.25)

it’s easy to calculate the spinor current explicitly. For the time component,

ψ̄sγ
0ψs′ = ψ†

sψs′ , (11.26)

which clearly vanishes unless both spinors are spin up or down. This holds even if the
spinor is not rest due to the normalization of the spinor. For the spatial components,

ūs(p)γ
ius′(p) = m

(
ξs
ξs

)†(−σi
σi

)(
ξs′

ξs′

)
= m(−ξ†sσiξs′ + ξ†sσiξs′) = 0.

(11.27)
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Similar calculation can show v̄s(p)γ
ivs′(p) = 0 as well. The spatial component vanishes iden-

tically is clearly an expected result for non-relativistic limit. Notice currents like ūsγ
ivs′ or

v̄sγ
ius′ are possible, but are relativistic effects, as these terms represent particle antiparticle

annihilation and pair production.

(c) This is just to look at the Schrodinger-Pauli equation. From the Eq. (10.4) of the book,
it’s clear that only B field couples with the Pauli matrices that can change the spin.

(d) Since the spin is not changed while the spin has been flipped. The helicity has been flipped.
On the other hand, chirality is not changed. This is consistent with (a), which only states
the QED vertex conserves chirality, not helicity.

(e) One can use Stern-Gerlach experiment to measure the spin of a slow electron. In principle,
one can simply send the electron through an inhomogeneous magnetic field and observing
the deflection. However, since electron is charged particle, there is Lorentz force that will
bend the trajectory in a circle. One can use electric field to balance this effect. Since just
shown in (d) that the electric field can’t alter the spin, this electric field will not affect the
result.

(f) This is actually the famous Wu experiment, which establishes that parity is not conserved
in weak interaction. One can measure the spin and momentum of the electron with respect
to the colbalt-60 to find out the polarization. Notice since nickel-60 has almost the same
rest mass as the colbalt-60. One can safely assume the nickel-60 is almost at rest and
most of the momentum are carried out by the electron and the anti-neutrino, and thus
the momentum of the electron and that of the anti-neutrino must be balanced off between
themselves. As there is also not much energy available to the electron, it’s safe to assume
its speed is non-relativistic, and we can expect the spin is almost conserved in this case. If
such decay is carried by a spin-1 gauge boson, due to the spin conservation of part (b)’s
result, the electron and the anti-neutrino should either be both spin up or both spin down
with respect to the colbalt-60’s spin. On the other hand, momentum conservation says
the two must have opposite momentum. These imply that the helicities of the two must
be different. Also, as the neutrinos are almost massless, their chirality eigenstates almost
correspond to their helicity eigenstates.

If the gauge boson responsible for the weak decay has an interaction vertex that conserves
the chirality like the one in part (a), one would expect the electron emitted should be
unpolarized with respect to the colbalt-60. In reality however, as the RH neutrino or LH
anti-neutrino doesn’t participate in any Standard Model interactions (and they are never
observed at this point), the only anti-neutrinos can be emitted in this decay are all RH
(both helicity and chirality sense, as neutrinos are almost massless), and the electrons have
to be all in LH helicities to conserve spin. This establishes the fact that the weak interaction
doesn’t conserve parity. It’s also interesting to know the parity is maximally broken in the
weak interaction or in other words, it has a V-A interaction structure, so it doesn’t interact
with RH chirality particle and LH chirality anti-particle at all.
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11.7

Throughout the following derivation, we maintain in the Weyl basis. From the Eq. (11.90) of
the book, we can see

C · P · T: ψ†(x) → (−γ5ψ∗(−x))† = −ψT (−x)γ5. (11.28)

Under C · P · T, we have

• ψ̄ψ:

ψ̄(x)ψ(x) → (−ψT (−x)γ5)γ0(−γ5ψ∗(−x))
= −ψ̄(γ5γ0γ5γ0)Tψ
= ψ̄(γ5γ5γ0γ0)

Tψ

= ψ̄(−x)ψ(−x).

(11.29)

• iψ̄ /∂ψ: Notice that ∂µ → −∂µ and i∂µ → (−i)(−∂µ) = i∂µ. Thus, the operator i∂µ itself
is invariant under CPT transformation

iψ̄(x)/∂ψ(x) → (−1)ki(−ψT (−x)γ5)γ0γµ∂µ(−γ5ψ∗(−x))
= (−1)k+1i∂µψ̄(γ5γ0γµγ5γ0)

Tψ

= (−1)k+2iψ̄(γ5γ0γµγ5γ0)
T∂µψ

= (−1)k+2iψ̄(γ5γ5γ0γµγ0)
T∂µψ

= (−1)k+2iψ̄(γ0γµγ0)
T∂µψ

= (−1)k+2iψ̄(γ†µ)
T∂µψ

= (−1)k+2iψ̄γ∗µ∂µψ

= iψ̄(−x)/∂ψ(−x),

(11.30)

where k = 0 for µ ̸= 2 and k = 1 for µ = 2 since in the Weyl basis, γ2 is imaginary. On
the third line, we integrate by part and get an extra factor of −1.

• ψ̄ /Aψ: This can be easily deduced from the above. Since Aµ(x) → −Aµ(−x), but there
is no extra factor of −1 from the integration by part, and the rest parts just transform
similarly as the above, we can deduce that ψ̄ /Aψ is invariant under CPT transformation.

• ψ̄γµγ5ψWµ:

ψ̄(x)γµγ5ψ(x)Wµ(x) → (−1)k(−ψT (−x)γ5)γ0γµγ5(−γ5ψ∗(−x))(−Wµ(−x))
= (−1)kψ̄(γ5γ0γµγ5γ5γ0)

TψWµ

= (−1)kψ̄(γ5γ0γµγ0)
TψWµ

= (−1)kψ̄(γ5γµ†)TψWµ

= (−1)kψ̄γµ∗γ5ψWµ

= ψ̄(−x)γµγ5ψ(−x)Wµ(−x),

(11.31)

where again k = 0 for µ ̸= 2 and k = 1 for µ = 2.

107



Chapter 11. Spinor solutions and CPT

• ψ̄σµνψFµν : Notice that Fµν = ∂µAν − ∂νAµ → (−∂µ)(−Aν)− (−∂ν)(−Aµ) = Fµν . Thus
the field tensor Fµν itself is invariant under CPT transformation.

ψ̄(x)σµνψ(x)Fµν(x) → (−1)k(−ψT (−x)γ5)γ0σµν(−γ5ψ∗(−x))Fµν(−x)
= (−1)k+1ψ̄(γ5γ0σµνγ5γ0)

TψFµν

= (−1)k+2ψ̄(γ5γ5γ
0σµνγ0)

TψFµν

= (−1)k+2ψ̄(γ0σµνγ0)
TψFµν

= (−1)k+2ψ̄(σµν†)TψFµν

= (−1)k+2ψ̄σµν∗ψFµν

= ψ̄(−x)σµνψ(−x)Fµν(−x),

(11.32)

where now k = 0 for either µ = 2 or ν = 2 (σµν is real in the Weyl basis) and k = 1 for
µ ̸= ν ̸= 2 (σµν is imaginary in the Weyl basis).

• iψ̄γ5ψ:

iψ̄(x)γ5ψ(x) → (−i)(−ψT (−x)γ5)γ0γ5(−γ5ψ∗(−x))
= iψ̄(γ5γ0γ5γ5γ0)

Tψ

= iψ̄(γ5γ0γ0)
Tψ

= iψ̄(−x)γ5ψ(−x).

(11.33)

Now, it’s easy to see that terms like (Fµν)
n is invariant because Fµν itself is invariant;

(∂µAµ)
n → ((−∂µ)(−Aµ))n = (∂µAµ)

n is invariant; (Aµ)
n(Bµ)

n → (−1)2n(Aµ)
nBn

µ → Anµ(Bµ)
n

is invariant (Aµ can be the same as the Bµ but the vector indices must contract properly
to maintain the Lorentz invariance). The above derivations also illustrate that each vector
index got a factor of −1 under CPT transformation then as long as these indices are properly
contracted to maintain the Lorentz invariance, they must cancel out in pair and thus invariant
under CPT transformation. Every derivative operator ∂µ sandwiched between a spinor bilinear
should be paired with a factor of i to cancel out the factor of −1 from integration by part.

It should be noted that any spinor bilinears can be decomposed into sum of any of the
above terms. The reason is that in 4d spacetime, the Dirac spinors have 4 components, and
thus the spinor bilinear can have at most 16 degrees of freedom. In the above derivations, the
scalar bilinear ψ̄ψ takes 1 dof; the vector bilinear ψ̄γµψ takes 4 dof; the anti-symmetric tensor
bilinear ψ̄σµνψ takes 6 dof (since any general 4× 4 anti-symmetric matrix can have at most 6
dof); the axial-vector bilinear ψ̄γµγ5ψ takes 4 dof; the pseudo scalar bilinear iψ̄γ5ψ takes 1 dof
(We shall justify in the Problem 11.8 that they are mutually orthogonal and thus, must take
independent degree of freedom). In total, these spinor bilinears take 1+4+6+4+1 = 16 dof.
Therefore, the degree of freedom is exhausted and any bilinears that sandwiched more than
five gamma matrices have at least two repeated gamma matrices and thus can be reduced and
simplified into sums of any of the above terms.

Therefore, any Lorentz invariant terms one can write down in terms of Dirac spinors, γ-
matrices, vector fields, and tensor fields are automatically invariant under CPT.

108



Chapter 11. Spinor solutions and CPT

11.8

(a) First notice that by applying Eq. (10.142) onto Eq. (10.141) of the book, it’s also true
that gµν σ̄

µ
α1α2

σ̄νβ1β2 = 2εα1β1
εα2β2

. Then, in the Weyl representation,

ψ̄1γ
µPLψ2 =

(
ψ†
1L ψ†

1R

)(0 1
1 0

)(
0 σµ

σ̄µ 0

)(
1 0
0 0

)(
ψ2L

ψ2R

)
= ψ†

1Lσ̄
µψ2L. (11.34)

Thus,

(ψ̄1γ
µPLψ2)(ψ̄3γµPLψ4) = (ψ†

1Lσ̄
µψ2L)(ψ

†
3Lσ̄µψ4L)

= (ψ†
1Lα1

(σ̄µ)α1α2
ψ2Lα2

)(ψ†
3Lβ1

(σ̄µ)β1β2ψ4Lβ2
)

= 2εα1β1
εα2β2

(ψ†
1Lα1

ψ2Lα2
)(ψ†

3Lβ1
ψ4Lβ2

)

= −2εα1β1
εα2β2

(ψ†
1Lα1

ψ4Lβ2
)(ψ†

3Lβ1
ψ2Lα2

)

= 2εα1β1
εβ2α2

(ψ†
1Lα1

ψ4Lβ2
)(ψ†

3Lβ1
ψ2Lα2

)

= (ψ†
1Lα1

(σ̄µ)α1β2
ψ4Lβ2

)(ψ†
3Lβ1

(σ̄µ)β1α2
ψ2Lα2

)

= (ψ̄1γ
µPLψ4)(ψ̄3γµPLψ2).

(11.35)

The minus sign on the fourth line is due to the anti-commutativity of the spinors. In the
fifth line, the minus sign is canceled because εα2β2

= −εβ2α2
. I believe the Schwartz has

a typo that there should be no minus sign in front of the last equality because
the spinors should anti-commute. Also see Peskin & Schroeder’s corrections comment
on their p.51 1.

(b) Since

ψ̄1γ
µγαγβPLψ2 =

(
ψ†
1L ψ†

1R

)(0 1
1 0

)(
0 σµ

σ̄µ 0

)(
0 σα

σ̄α 0

)(
0 σβ

σ̄β 0

)(
1 0
0 0

)(
ψ2L

ψ2R

)
= ψ†

1Lσ̄
µσασ̄βψ2L.

(11.36)

Thus,

(ψ̄1γ
µγαγβPLψ2)(ψ̄3γµγαγβPLψ4) = (ψ†

1Lσ̄
µσασ̄βψ2L)(ψ

†
3Lσ̄µσασ̄βψ4L)

= (ψ†
1Lα1

σ̄µα1α2
σαα2α3

σ̄βα3α4
ψ2Lα4

)(ψ†
3Lβ1

(σ̄µ)β1β2(σα)β2β3(σ̄β)β3β4ψ4Lβ4
)

= 8εα1β1
εα2β2

εα2β2
εα3β3

εα3β3
εα4β4

(ψ†
1Lα1

ψ2Lα4
)(ψ†

3Lβ1
ψ4Lβ4

)

= 32εα1β1
εα4β4

(ψ†
1Lα1

ψ2Lα4
)(ψ†

3Lβ1
ψ4Lβ4

)

= −32εα1β1
εα4β4

(ψ†
1Lα1

ψ4Lβ4
)(ψ†

3Lβ1
ψ2Lα4

)

= 32εα1β1
εβ4α4

(ψ†
1Lα1

ψ4Lβ4
)(ψ†

3Lβ1
ψ2Lα4

)

= 16(ψ†
1Lσ̄

µψ4L)(ψ
†
3Lσ̄µψ2L)

= 16(ψ̄1γ
µPLψ4)(ψ̄3γµPLψ2).

(11.37)

1https://www.slac.stanford.edu/ mpeskin/QFT.html
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In the fourth line, we use the contraction relation of the Levi-Civita tensor: εαβε
αβ = 2.

Again, the minus sign on the fifth line is due to the anti-commutativity of the spinors. In
the sixth line, the minus sign is canceled because εα2β2

= −εβ2α2
. I believe the Schwartz

has a typo that there should be no minus sign in front of the last equality
because the spinors should anti-commute.

(c) There are again some typos in this question. It’s should be Tr
[
(ΓM)†ΓN

]
=

4δMN instead of just Tr
[
ΓMΓN

]
= 4δMN . Otherwise, for example, Tr[γµγν ] = 4gµν ,

which is 4 if µ = ν = 0 but −4 if µ = ν = i and thus, cannot be properly normalized.
We shall also use the set ΓM ∈ {I, γµ, σµν , γ5γµ, iγ5} as the basis. The i in front of the
pseudo-scalar basis is necessary for proper normalization as we will see (and also, when
sandwiched between fermion bilinear, is required to keep CPT invariance as we showed in
Problem 11.7).

We shall denote the scalar basis as S, the vector basis as V, the tensor basis as T, the
axial-vector basis as A, and the pseudo-scalar basis as P.

Before moving on, we shall prove that γ0ΓMγ0 = (ΓM)†. For S, γ0Iγ0 = (γ0)2 = I = I†.
For V and T, these are already proven in the Eq. (10.84) and Eq. (10.85) in the book.
For A, γ0γ5γ

µγ0 = −γ5γ0γµγ0 = −γ5(γµ)† = −γ†5(γ
µ)† = −(γµγ5)

† = (γ5γ
µ)†. For P,

γ0iγ5γ
0 = −i(γ0)2γ5 = −iγ5 = (iγ5)

†

• SS:
Tr
[
I†I
]
= 4. (11.38)

• SV:
Tr
[
I†γµ

]
= Tr[γµ] = 0, (11.39)

by Eq. (A.39) of the book.

• ST:
Tr
[
I†σµν

]
= Tr[γµγν ]− Tr[γνγµ] = 0. (11.40)

• SA:
Tr
[
I†γ5γµ

]
= Tr[γ5γ

µ] = −Tr[γµγ5] = −Tr[γ5γ
µ] = 0. (11.41)

• SP:
Tr
[
I†γ5

]
= Tr[γ5] = 0, (11.42)

by Eq. (A.39) of the book.

• VV:

Tr
[
(γµ)†γν

]
= Tr

[
γ0γµγ0γν

]
= Tr

[
(2g0µ − γµγ0)γ0γν

]
= Tr[2γµγν − γµγν ]

= 2g0µTr
[
γ0γν

]
− Tr[γµγν ] = 8g0µg0ν − 4gµν

=

{
4, if µ = ν

0, if µ ̸= ν
.

(11.43)
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• VT:

Tr
[
(γµ)†σαβ

]
= Tr

[
γ0γµγ0σαβ

]
= 0, (11.44)

by Eq. (A.39) of the book since this has odd number of gamma matrices inside the
trace.

• VA:

Tr
[
(γµ)†γ5γ

ν
]
= −Tr

[
γ0γµγ0γ5γ

νγαγα
]

= −Tr
[
γαγ0γµγ0γ5γ

νγα
]

= Tr
[
γ0γµγ0γ5γ

νγαγα
]

= −Tr
[
(γµ)†γ5γ

ν
]

=⇒ Tr
[
(γµ)†γ5γ

ν
]
= 0,

(11.45)

where we have chosen α such that α ̸= 0, α ̸= µ, and α ̸= ν. Since there are at
most 3 different gamma matrices in the trace, it’s always possible to choose a fourth
gamma matrix γα that anti-commute with all others. Also notice that since α ̸= 0,
(γα)2 = −1.

• VP:

Tr
[
(γµ)†iγ5

]
= iTr

[
γ0γµγ0γ5

]
= −iTr

[
γ5γ

0γµγ0
]

= −iTr
[
γ0γµγ0γ5

]
= −Tr

[
(γµ)†iγ5

]
=⇒ Tr

[
(γµ)†iγ5

]
= 0.

(11.46)
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• TT: By convention, for the tensor σµν we can ask the indices µ < ν.

Tr
[
(σµν)†σαβ

]
= Tr

[
γ0σµνγ0σαβ

]
= −1

4
Tr
[
γ0(γµγν − γνγµ)γ0(γαγβ − γβγα)

]
= −Tr

[
γ0γµγνγ0γαγβ

]
= −Tr

[
γ0(2gµ0 − γ0γµ)γνγαγβ

]
= −2gµ0Tr

[
γ0γνγαγβ

]
+ Tr

[
γµγνγαγβ

]
= −8gµ0(−g0αgνβ + g0βgνα) + 4(−gµαgνβ + gµβgνα)

=


4g0αgνβ − 4g0βgνα µ = 0

−4giαgνβ + 4giβgνα µ = i ̸= 0

0 µ ̸= α

=


4g0αgνβ µ = 0

−4giαgνβ µ = i ̸= 0

0 µ ̸= α

=


4g00gii µ = 0 (no sum on i)

−4giigjj µ = i ̸= 0, ν = j ̸= 0 (no sum on i and j)

0 µ ̸= α

= 4δµαδνβ,

(11.47)

where we used the fact that it’s always true that ν ̸= 0 and β ̸= 0 and also, since
µ < ν and α < β, it’s impossible to have µ = β and ν = α.

• TA:

Tr
[
(σµν)†γ5γ

α
]
= Tr

[
γ5(σ

µν)†γα
]

= Tr
[
(σµν)†γαγ5

]
= −Tr

[
(σµν)†γ5γ

α
]

=⇒ Tr
[
(σµν)†γ5γ

α
]
= 0.

(11.48)

• TP:

Tr
[
(σµν)†iγ5

]
= −1

2
Tr
[
γ0(γµγν − γνγµ)γ0γ5

]
= 0 (11.49)

as already proven as a middle step in the case VA.
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• AA:

Tr
[
(γ5γ

µ)†γ5γ
ν
]
= Tr

[
γ0γ5γ

µγ0γ5γ
ν
]

= Tr
[
γ0γµγ0γν

]
= Tr

[
γ0(2gµ0 − γ0γµ)γν

]
= 2gµ0Tr

[
γ0γν

]
− 4gµν

= 8gµ0g0ν − 4gµν

= 4δµν .

(11.50)

• AP:
Tr
[
(γ5γ

µ)†iγ5

]
= iTr

[
γ0γ5γ

µγ0γ5
]
= Tr

[
γ0γµγ0

]
= 0, (11.51)

by Eq. (A.39) of the book since this has odd number of gamma matrices inside the
trace.

• PP:
Tr
[
(iγ5)

†iγ5

]
= Tr[γ5γ5] = Tr[I] = 4. (11.52)

We have thus proven that Tr
[
(ΓM)†ΓN

]
= 4δMN .

(d) We can write out the spinor indices of the bilinear product

(ψ̄1Γ
Mψ2)(ψ̄3Γ

Nψ4) = (ψ̄1)aΓ
M
ab(ψ2)b(ψ̄3)cΓ

N
cd(ψ4)d. (11.53)

Thus, the spinor fields really just serve to bookkeeping the indices. As already argued in
Problem 11.7 that the above set of 16 tensor structures can be used as a basis of 4 × 4
complex matrices. This means it’s always possible to express

(ψ̄1)aΓ
M
ab(ψ2)b(ψ̄3)cΓ

N
cd(ψ4)d = −

∑
PQ

CMN
PQ (ψ̄1)aΓ

P
ad(ψ4)d(ψ̄3)cΓ

Q
cb(ψ2)b, (11.54)

for some coefficients CMN
PQ to be determined. It’s important to notice that there is

a minus sign again coming from anti-commuting the spinor fields since their
components are Grassmann number. Schwartz again missed the minus sign.
Since the spinor fields really just serve to bookkeeping the indices, this equation actually
stands as

ΓMabΓ
N
cd = −

∑
PQ

CMN
PQ ΓPadΓ

Q
cb

ΓMabΓ
N
cd(Γ

A†)da(Γ
B†)bc = −

∑
PQ

CMN
PQ ΓPadΓ

Q
cb(Γ

A†)da(Γ
B†)bc

Tr
[
ΓA†ΓMΓB†ΓN

]
= −

∑
PQ

CMN
PQ Tr

[
ΓA†ΓP

]
Tr
[
ΓB†ΓQ

]
Tr
[
ΓA†ΓMΓB†ΓN

]
= −16

∑
PQ

CMN
PQ δAP δBQ

CMN
PQ = − 1

16
Tr
[
ΓP †ΓMΓQ†ΓN

]
,

(11.55)
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where in the second line, we multiply both sides by (ΓA†)da(Γ
B†)bc.

Therefore, (ψ̄1Γ
Mψ2)(ψ̄3Γ

Nψ4) = −
∑

PQ
1
16
Tr
[
ΓP †ΓMΓQ†ΓN

]
.
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Spin and statistics

12.1

Assuming [
asp, a

s
′†
q

]
=
[
bsp, b

s
′†
q

]
= (2π)3δ3(p− q)δss′ (12.1)

Then,

⟨0|
[
ψ̄ψ(x), ψ̄ψ(y)

]
|0⟩ = ⟨0| [ψ̄(x)

[
ψ(x), ψ̄(y)

]
ψ(y) +

[
ψ̄(x), ψ̄(y)

]
ψ(x)ψ(y)

+ ψ̄(y)ψ̄(x)[ψ(x), ψ(y)] + ψ̄(y)
[
ψ̄(x), ψ(y)

]
ψ(x)] |0⟩

= ⟨0|
[
ψ̄(x)

[
ψ(x), ψ̄(y)

]
ψ(y)− ψ̄(y)

[
ψ(y), ψ̄(x)

]
ψ(x)

]
|0⟩

= ⟨0| ψ̄(x)[(i/∂x +m)D1(t, r)]ψ(y) |0⟩ − ⟨0| ψ̄(y)[(i/∂x +m)D1(t, r)]ψ(x) |0⟩
(12.2)

where (12.87) of the book is used. We also used the fact that D1(t, r) is even under the PT
transformation (x↔ y) from (12.93) of the book. Then,

⟨0|
[
ψ̄ψ(x), ψ̄ψ(y)

]
|0⟩ = [(i/∂x +m)D1(t, r)](⟨0| ψ̄(x)ψ(y) |0⟩ − ⟨0| ψ̄(y)ψ(x) |0⟩)

= [(i/∂x +m)D1(t, r)](

∫
d3q

(2π)3
/q −m

2ωq
e−iq(x−y) −

∫
d3p

(2π)3
/p−m

2ωp
eip(x−y)),

(12.3)

where we used (12.48) of the book. Notice that the momentum variable p and q are actually
dummy, so we can relabel p→ q in the second term above and arrives at

⟨0|
[
ψ̄ψ(x), ψ̄ψ(y)

]
|0⟩ = [(i/∂x +m)D1(t, r)](

∫
d3q

(2π)3
1

2ωq
(/q −m)(e−iq(x−y) − eiq(x−y))

= [(i/∂x +m)D1(t, r)][(i/∂x −m)D(t, r)]

(12.4)

As D(t, r) vanish outside the lightcone, this must also vanish outside the lightcone. Since both
D(t, r) and D1(t, r) have support in the future and past lightcones, this will also have support
there. Thus, the anticommutation relations

{
ψ̄(x), ψ(y)

}
is a sufficient but not necessary

condition for the causality requirement
[
ψ̄ψ(x), ψ̄ψ(y)

]
= 0 outside the lightcone.
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Quantum electrodynamics

13.1

(a) The Moller scattering (e−e− → e−e−) has two Feynman diagrams at tree level, the t channel
and u channel. The channel is the same as the Rutherford scattering (e−p+ → e−p+) with
mp being replaced by me, and a sign change on electric charge which will be squared out
anyway. Since there is only one mass involved, we simply use m to denote it.

Modifying (13.83) of the book, we then have

Mt =
e2

t
ū(p3)γ

µu(p1)ū(p4)γµu(p2), (13.1)

and from (13.91) of the book,

|Mt|2 =
8e4

t2
[
u2 + s2 + 8tm2 − 8m4

]
(13.2)

The u channel can be gotten from t channel by switching p3 ↔ p4. This change sends
s→ s, t→ u, and u→ t. We then have

Mu =
e2

u
ū(p4)γ

µu(p1)ū(p3)γµu(p2), (13.3)

and

|Mu|2 =
8e4

u2
[
t2 + s2 + 8um2 − 8m4

]
(13.4)

To calculate the spin-averaged differential cross section, we will also need the cross terms
of the matrix elements.

MtM†
u =

e4

tu
[ū(p3)γ

µu(p1)][ū(p4)γµu(p2)][ū(p2)γνu(p3)][ū(p1)γ
νu(p4)] (13.5)

M†
tMu =

e4

tu
[ū(p1)γ

µu(p3)][ū(p2)γµu(p4)][ū(p3)γνu(p2)][ū(p4)γ
νu(p1)] (13.6)
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When averaging over the spins, the two cross terms actually give the same contribution.
Thus,∑

spin

(MtM†
u +M †

tMu) =
2e4

tu
Tr
[
(/p3 +m)γµ(/p1 +m)γν(/p4 +m)γµ(/p2 +m)γν

]
(13.7)

Notice that only terms with even number of gamma matrices don’t vanish from the trace,
so the only possible surviving terms are either with 8 or 6 or 4 gamma matrices. Let’s
check each case.

With 8 γs, there is only one arrangement,

Tr
[
γαγµγβγνγργµγ

σγν

]
= −2Tr

[
γαγργνγβγσγν

]
(γµγβγνγργµ = −2γργνγβ)

= −8gβσ Tr[γαγρ] (γνγβγσγν = 4gβσ)

= −32gβσgαρ (Tr[γαγρ] = 4gαρ)

(13.8)

With 6 γs,

Tr
[
γαγµγβγνγµγν

]
= 4Tr

[
γαgβνγν

]
= 4Tr

[
γαγβ

]
= 16gαβ (13.9)

Similarly, Tr
[
γαγµγβγνγµγν

]
= 16gαβ. All other arrangements of 6 γs are cyclic permuta-

tion and relabeling of the indices of these two and thus are all equal to 16gαβ.

With 4 γs, only one arrangement is possible,

Tr
[
γµγνγµγν

]
= −2Tr

[
γµγµ

]
= −8Tr[I] = −32 (13.10)

Collecting the terms,∑
spin

(MtM†
u +M†

tMu) =
2e4

tu
[−32p12p34 + 16m2(p13 + p34 + p23 + p14 + p12 + p24)− 32m4],

(13.11)

where pij ≡ pi ·pj. Using the fact that all particles in Moller scattering have the same mass
and from the (13.65)-(13.67) of the book, it’s easy to see that p12 = p34, p13 = p24, and
p14 = p23. Thus,∑
spin

(MtM†
u +M†

tMu) =
2e4

tu
[−32p212 + 32m2(p13 + p14 + p12)− 32m4]

= −16e4

tu
[(s− 2m2)2 − 2m2(2m2 − t+ 2m2 − u+ s− 2m2) + 4m4]

= −16e4

tu
[s2 − 4m2s+ 8m4 − 2m2(2s− 2m2)] (s+ t+ u =

∑
i

m2
i )

= −16e4

tu
(s2 − 8m2s+ 12m4)

(13.12)
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Finally,

1

4

∑
spin

|M|2 = 1

4

∑
spin

|Mt −Mu|2 =
1

4

∑
spin

(|Mt|2 + |Mu|2 −MtM†
u −M†

tMu)

=
2e4

t2
(u2 + s2 + 8m2t− 8m4) +

2e4

u2
(t2 + s2 + 8m2u− 8m4) +

4e4

tu
(s2 − 8m2s+ 12m4)

(13.13)

With (5.33) of the book, in the CM frame,

(
dσ

dΩ
)CM =

1

256π2E2
CM

∑
spin

|M|2 (13.14)

and substitute E2
CM = s. This is the spin-averaged differential cross section for Moller

scattering.

(b) We take pµ1 = (E, p⃗i), p
µ
2 = (E,−p⃗i), pµ3 = (E, p⃗f ), and pµ4 = (E,−p⃗f ). We then have

p⃗i · p⃗f = p2 cos θ, where p = |p⃗i| = |p⃗f | =
√

ECM

2
−m2 and θ is the scattering angle. Then,

s = E2
CM = (p1 + p2)

2 = 2m2 + 2p12 = 2(m2 + E2 + p2) = 4E2

t = (p1 − p3)
2 = 2m2 − 2p13 = 2(m2 − E2 + p2 cos θ) = 2p2(cos θ − 1)

u = (p1 − p4)
2 = 2m2 − 2p24 = 2(m2 − E2 − p2 cos θ) = −2p2(cos θ + 1)

(13.15)

1

4

∑
spin

|M|2 = 2e4

4p4(cos θ − 1)2
(4p4(cos θ + 1)2 + 16E4 + 16m2p2(cos θ − 1)− 8m4)

+
2e4

4p4(cos θ + 1)2
(4p4(cos θ − 1)2 + 16E4 − 16m2p2(cos θ + 1)− 8m4)

+
4e4

4p4 sin2 θ
(16E4 − 32m2E2 + 12m4)

=
e4

p4 sin4 θ
[2p4((cos θ + 1)4 + (cos θ − 1)4) + 8E4((cos θ + 1)2 + (cos θ − 1)2 + 2 sin2 θ)

+ 8m2p2((cos θ − 1)(cos θ + 1)(cos θ + 1− cos θ + 1))− 32m2E2 sin2 θ

− 4m4((cos θ + 1)2 + (cos θ − 1)2 − 3 sin2 θ)]

=
e4

p4 sin4 θ
[2p4((cos θ + 1)4 + (cos θ − 1)4) + 32E4 − 16m2p2 sin2 θ

− 32m2E2 sin2 θ − 4m4(5 cos2 θ − 1)]

(13.16)

In the NR limit, p ≪ E ≈ m, and we can pretty much ignore the term with factor of p2
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and replace E with m. Thus we can arrive at

1

4

∑
spin

|M|2 = e4

p4 sin4 θ
[32E4 − 32m2E2 sin2 θ − 4m4(5 cos2 θ − 1)]

=
e4m4

p4 sin4 θ
(32 cos2 θ − 20 cos2 θ + 4)

=
64π2α2m4

p4

(
1 + 3 cos2 θ

sin4 θ

) (13.17)

(
dσ

dΩ
)CM =

1

256π2E2
CM

∑
spin

|M|2 = m4α2

E2
CMp

4

(
1 + 3 cos2 θ

sin4 θ

)
(13.18)

(c) I the UR limit, we can treat m ≈ 0 and E ≈ p. Then,

1

4

∑
spin

|M|2 = e4

p4 sin4 θ
[2p4((cos θ + 1)4 + (cos θ − 1)4) + 32E4]

=
4e4

sin4 θ
(9 + 6 cos2 θ + cos4 θ)

= 64π2α2

(
(3 + cos2 θ)2

sin4 θ

) (13.19)

(
dσ

dΩ
)CM =

1

256π2E2
CM

∑
spin

|M|2 = α2

E2
CM

(
(3 + cos2 θ)2

sin4 θ

)
(13.20)

13.2

The momenta of each particles have been written out in the Eq. (13.102) of the book. The
electron is taken to be massless as this is very high energy limit.

pµ4 = pµ1 + pµ2 − pµ3 = (E − E ′ +mp, p⃗i − p⃗f ). (13.21)

u = (p1 − p4)
2 = (p2 − p3)

2 = m2
p − 2p14 = m2

p − 2p23,

t = (p1 − p3)
2 = (p2 − p4)

2 = −2p13 = 2m2
p − 2p24,

s = (p1 + p2)
2 = (p3 + p4)

2 = m2
p + 2p12 = m2

p + 2p34.

(13.22)

and

p14 = p23 = E ′mp,

p13 = EE ′(1− cos θ),

p24 = mp(E − E ′) +m2
p = m2

p + EE ′(1− cos θ),

p12 = p34 = Emp,

(13.23)

where θ is the scattering angle. Notice from the equation of p24, we have

EE ′(1− cos θ) = mp(E − E ′). (13.24)
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The scattering amplitude is

1

4

∑
spins

|M|2 = 2e4

t2
[u2 + s2 + 4tm2

p − 2m4
p]

=
2e4

4E2E ′2(1− cos θ)2
[(m2

p − 2p14)
2 + (m2

p + 2p12)
2 − 8EE ′(1− cos θ)m2

p − 2m4
p]

=
2e4

4E2E ′2(1− cos θ)2
[−4E ′m3

p + 4E ′2m2
p + 4Em3

p + 4E2m2
p − 8EE ′(1− cos θ)m2

p]

=
e4m2

p

2E2E ′2 sin4 (θ/2)
[−E ′mp + E ′2 + Emp + E2 − 2EE ′(1− cos θ)]

=
e4m2

p

2E2E ′2 sin4 (θ/2)
[E ′2 + E2 − EE ′(1− cos θ)]

=
e4m2

p

2E2 sin4 (θ/2)
[1 +

E2

E ′2 − E

E ′ (1− cos θ)],

(13.25)

where we have used Eq. (13.24) in the fourth line.

From problem 5.1,

dσ

dΩ
=

1

64π2mp

[
E4 + E ′(1− |p⃗1|

|p⃗3|
cos θ)

]−1 |p⃗3|
|p⃗1|

|M|2

=
1

64π2mp

E ′

E

[
E − E ′ +mp + E ′ − E cos θ

]−1 |M|2

=
1

64π2m2
p

E ′

E

[
1 +

E

mp

(1− cos θ)

]−1

|M|2

=
1

64π2m2
p

E ′

E

[
1 +

E − E ′

E ′

]−1

|M|2

=
e4

128π2E2 sin4 (θ/2)

E ′2

E2

[
1 +

E2

E ′2 − E

E ′ (1− cos θ)

]
=

e4

128π2E2 sin4 (θ/2)

E ′

E

[
E ′

E
+
E

E ′ − (1− cos θ)

]
=

e4

128π2E2 sin4 (θ/2)

E ′

E

[
E ′2 + E2

EE ′ − 2 + 2 cos2 (θ/2)

]
=

e4

128π2E2 sin4 (θ/2)

E ′

E

[
(E − E ′)2

EE ′ + 2 cos2 (θ/2)

]
=

e4

64π2E2 sin4 (θ/2)

E ′

E

[
cos2 (θ/2) +

(E − E ′)

mp

sin2 (θ/2)

]
,me ≪ E,

(13.26)

where Eq. (13.24) has been used again in the third to fourth line as well as the second to the
last line to the last line.
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13.3

(a) Actually, the formula only applies for the rest frame of the mother particle. In the rest
frame of the mother particle,

p1 = (mϕ, 0), p2 = (E, p⃗2), p3 = (E,−p⃗2). (13.27)

Since p1 = p2 + p3, squaring both sides tells us m2
ϕ = 2m2

e + 2(E2 + p2f ) = 4m2
e + 4p2f or

pf =

√
m2
ϕ − 4m2

e

2
=
mϕ

√
1− 4x2

2
, (13.28)

where pf = |p⃗2| The phase-space integral becomes

dΓ =
1

8mϕ

|M|2 d
3p2

(2π)3
d3p3

(2π)3
1

E2 (2π)
4δ4(p1 − p2 − p3). (13.29)

Integrate over p3,

Γ =
1

32π2mϕ

|M|2
∫
dpfd(cos θ)dϕ

p2f

E2 δ(2E −mϕ)

=
1

8πmϕ

|M|2
∫
dpf

p2f

E2 δ(2
√
m2
e + p2f −mϕ)

=
1

16πmϕ

|M|2
∫ ∞

mϕ−2me

dx

mϕ

√
1−4x

2

2
mϕ

2

δ(x)

=

√
1− 4x2

16πmϕ

|M|2θ(mϕ − 2me).

(13.30)

The θ function of course just tells us the mass of the particle ϕ needs to be at least two
times as much as the electron mass for the decay to occur.

(b) • Scalar

In the case of a scalar, the decay amplitude is given by

iMS = igSū(p2)v(p3), (13.31)

so

|MS|2 = g2S[ū(p2)v(p3)][v̄(p3)u(p2)]. (13.32)

Dividing the amplitude by a factor of two to account for taking unpolarized measure-
ments for the decay products, and taking the spin sum,

1

2

∑
spins

|MS|2 =
1

2
g2S Tr

[
( /p2 +me)( /p3 −me)

]
= g2S(2p23 − 2m2

e)

= g2Sm
2
ϕ(1− 4x2),

(13.33)
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where we used p23 = (p2 + p3)
2/2 − m2

e = m2
ϕ/2 − m2

e. Notice unlike the scattering
amplitude, the decay amplitude square is not dimensionless, as it should be to cancel
out the inverse mass dimension from the phase space integral and give the whole decay
rate a mass dimension 1. We have

ΓS =
g2Smϕ(1− 4x2)

3
2

16π
. (13.34)

This has the correct mass dimension [ΓS] = 1.

• Pseudoscalar

In the case of a pseudoscalar, the decay amplitude is given by

iMP = −gP ū(p2)γ5v(p3), (13.35)

Also,

M†
P = −igP [ū(p2)γ5v(p3)]† = −igPv(p3)†γ5γ0u(p2) = igPv(p3)

†γ0γ5u(p2) = igP v̄(p3)γ5u(p2).
(13.36)

so

|MP |2 = −g2P [ū(p2)γ5v(p3)][v̄(p3)γ5u(p2)] (13.37)

Dividing the amplitude by a factor of two to account for taking unpolarized measure-
ments for the decay products, and taking the spin sum,

1

2

∑
spins

|MP |2 = −1

2
g2P Tr

[
( /p2 +me)γ5( /p3 −me)γ5

]
= −g2P (−2p23 − 2m2

e)

= g2Pm
2
ϕ.

(13.38)

Thus,

ΓP =
g2Pmϕ

√
1− 4x2

16π
. (13.39)

• Vector

In the case of a vector, the decay amplitude is given by

iMV = igV ū(p2)γ
µv(p3)ϵ

µ
1 , (13.40)

so

|MV |2 = g2V [ū(p2)γ
µv(p3)][v̄(p3)γ

νu(p2)]ϵ
µ
1ϵ
ν∗
1 . (13.41)

Dividing the amplitude by a factor of two to account for taking unpolarized mea-
surements for the decay products, and another factor of three from averaging out the
polarization states of the incoming vector boson, and taking the spin sum,

1

6

∑
spins,pols

|MV |2 = −1

6
g2V Tr

[
( /p2 +me)γ

µ( /p3 −me)γ
ν
]
gµν

=
1

6
g2V (8p23 + 16m2

e)

=
2

3
g2Vm

2
ϕ(1 + 2x2)

(13.42)
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where we have replaced the polarization sum of the vector boson in the first line with∑
pols.i ϵ

i
µϵ
i
ν → −gµν from the Eq. (13.112) of the book. Thus,

ΓV =
g2Vmϕ(1 + 2x2)

√
1− 4x2

24π
. (13.43)

• Axial vector

In the case of an axial vector, the decay amplitude is given by

iMA = −gAū(p2)γµγ5v(p3)ϵµ1 , (13.44)

Also,

M†
A = −igAv(p3)†γ5γν†γ0u(p2)ϵν∗1 = −igAv(p3)†γ5γ0γνu(p2)ϵν∗1 = igAv̄(p3)γ5γ

νu(p2)ϵ
ν∗
1 ,

(13.45)
where we used γν† = γ0γνγ0, so

|MA|2 = −g2A[ū(p2)γµγ5v(p3)][v̄(p3)γ5γνu(p2)]ϵµ1ϵ
ν∗
1 . (13.46)

Dividing the amplitude by a factor of two to account for taking unpolarized mea-
surements for the decay products, and another factor of three from averaging out the
polarization states of the incoming vector boson, and taking the spin sum,

1

6

∑
spins,pols

|MA|2 =
1

6
g2ATr

[
( /p2 +me)γ

µγ5( /p3 −me)γ5γ
ν
]
gµν

=
1

6
g2A(8p23 − 16m2

e)

=
2

3
g2Am

2
ϕ(1− 6x2).

(13.47)

Thus,

ΓA =
g2Amϕ(1− 6x2)

√
1− 4x2

24π
. (13.48)

(c) First we should realize that me,mµ ≪ mϕ = 4 GeV, so xe ≈ xµ ≈ 0. As such, Γ(ϕ →
e+ + e−) ≈ Γ(ϕ → µ+ + µ−) = (1 − Γ(ϕ → τ+ + τ−))/2 = 0.375. We can use the ratio of
two decay rates to cancel out the unknown coupling constant.

If ϕ is a scalar,
Γτ
Γe

= (1− 4x2τ )
3
2 = (1− 4(1.776/4)2)

3
2 = 0.0972. (13.49)

If ϕ is a pseudoscalar,

Γτ
Γe

=

√
1− 4x2τ =

√
1− 4(1.776/4)2 = 0.460. (13.50)

If ϕ is a vector,

Γτ
Γe

= (1 + 2x2τ )

√
1− 4x2τ = (1 + 2(1.776/4)2)

√
1− 4(1.776/4)2 = 0.641. (13.51)

123



Chapter 13. Quantum electrodynamics

The ϕ can not be an axial vector, as it needs the daughter particles to satisfy 6x2 < 1 for
the decay to happen, as a negative decay rate is not physical.

Since Γτ

Γe
= 0.25/0.375 = 0.667, this is closest to a prediction of vector boson, and thus, the

spin and parity of ϕ is JP = 1−, which means spin 1 and odd parity.

13.4

The book has already proved the case with 2 photon fields attached with the fermion loop.
One can also think about a tadpole diagram although this diagram vanishes for QED, as the
photon field has zero vacuum expectation value, but the statement that there is −1 for each
fermion loop is still true even if the external fields attached to the fermion loop is not gauge
boson fields but scalar fields. So to be more rigorous, one should consider a tadpole diagram,
and observe its time-ordered production

G1 = (ig) ⟨0|T{ϕα1β1...(x1)ψ̄a(x)Γ
αβ...
ab ϕαβ...(x)ψb(x)} |0⟩ , (13.52)

where g is a general coupling constant, ϕ is a general tensor field, and Γ a general tensor
structure to encode the interaction between the spinors and the tensor field. We used Greek
letter to denote the tensor indices while Latin letter for the spinor indices. It’s always true that
there is exactly one boson field sandwiched between the spinor bilinear, as this is the only way
that the interaction has a mass dimension 4. One needs to move the ψb(x) to the left of the
ψ̄a(x) to achieve the correct order that the field that is created is immediately destroyed. That
is simply

...ψ̄a(x)...ψb(x) = −...ψb(x)ψ̄a(x)..., (13.53)

as everything else in the time-ordered product just commuted with the spinor fields and thus
are not relevant.

Now for n external tensor fields attached with the fermion loop, again, as spinor fields simply
commute with everything inside the time-ordered product except with other spinor fields, thus,
everything other than the spinor fields are not relevant for the discussion,

Gn = (ig)n ⟨0|T{...ψ̄a1(x1)...ψb1(x1)ψ̄a2(x2)...ψbn−1
(xn−1)ψ̄an(xn)...ψbn(xn)}. (13.54)

Every spinor is already in the right order except for the first one and the last one, where the
fermion loop connects back to the origin and the ψbn(xn) needs to annihilate the ψa1(x1).

Gn = (ig)n(−1)2n−1 ⟨0|T{...ψbn(xn)ψ̄a1(x1)...ψb1(x1)ψ̄a2(x2)...ψbn−1
(xn−1)ψ̄an(xn)...}. (13.55)

As (−1)2n−1 = −1, we always get a −1 from each fermion loop.

13.5

(a) The order of the diagram is at O(e4). There are 2 box diagrams at this order, as shown in
Fig. 13.1. Then, there are 8 diagrams that has a tadpole loop attached onto an external
spinor leg (4 with an electron loop and 4 with a muon loop), shown in Fig. 13.2 as one
example. Then, there are 4 diagrams that each corrects one of the external propagators,
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e−

µ+

e+

µ−

(a)

e−

µ+

e+

µ−

(b)

Fig. 13.1: O(e4) box diagrams for e+e− → µ+µ−.

e−

µ+
e+

µ−

Fig. 13.2: An example of O(e4) diagrams for e+e− → µ+µ− with a tadpole attached onto the
external spinor leg.

shown in Fig. 13.3 as one example. There are 2 diagrams that has vacuum polarization
correction for the intermediate photon propagator (1 with an electron loop and 1 with a
muon loop), as shown in Fig. 13.4. Lastly, there are 2 diagrams that involve a vertex
correction, as shown in Fig. 13.5. Therefore, there are in total 2 + 8 + 4 + 2 + 2 = 18
diagrams at O(e4) order.

(b) Gauge invariance means the diagram should be independent of the gauge choice ξ variable
in the photon propagator. There are two internal photon propagators in the graph. One
can effectively treat this diagram as the t-channel diagrams as Eq. (9.41) of the book
(replacing the scalars with the spinors). Thus, the diagram is gauge invariant when also
including the diagrams with the photon lines like a u-channel diagram, which is exactly the
diagram shown in the Fig. 13.1b (no 4-vertex diagram in spinor QED).

(c) Let p1 (p2) to denote the incoming electron (positron)’s four-momentum. Let q (k) to
denote the top (bottom) photon line’s four-momentum. We can ignore the final states and
parameterize that the photon lines attached to a generic tensor Xαβ just like the procedure

125



Chapter 13. Quantum electrodynamics

e−

µ+
e+

µ−

Fig. 13.3: An example of O(e4) diagrams for e+e− → µ+µ− that has external propagator
correction for one of the legs.

e−

µ+e+

µ−

Fig. 13.4: O(e4) diagrams for e+e− → µ+µ− of which the intermediate photon propagator has
vacuum polarization correction.

e−

µ+

e+

µ−

(a)

e−

µ+
e+

µ−

(b)

Fig. 13.5: O(e4) vertex correction diagrams for e+e− → µ+µ−.
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in the Section 9.4 of the book. Then,

Mt =

∫
d4q

(2π)4
d4p

(2π)4
(2π)4δ4(p1 + p2 − k − q)(−ie)2

× v̄(p2)γ
ν ( /p1 − /q +me)

(p1 − q)2 −m2
e

γµu(p1)Πµα(q)ΠνβXαβ(q, k),

(13.56)

where Πµα(q) = − i

q
2

[
gµα − (1− ξ)

qµqα

q
2

]
. We can use the fact that the initial spinors are

on-shell such that they satisfy the Dirac equations:

/p1u(p1) = meu(p1), (13.57)

v̄(p2)/p2 = mev̄(p2). (13.58)

Replacing Πµα → ξqµqα, we find

Mt = −ξe2
∫

d4q

(2π)4
d4p

(2π)4
(2π)4δ4(p1 + p2 − k − q)

× v̄(p2)γ
ν ( /p1 − /q +me)/q

(p1 − q)2 −m2
e

u(p1)q
αΠνβXαβ(q, k)

= −ξe2
∫

d4q

(2π)4
d4p

(2π)4
(2π)4δ4(p1 + p2 − k − q)

× v̄(p2)γ
ν
(2p1 · q − /q/p1 − q2 +me/q)

−2p1 · q + q2
u(p1)q

αΠνβXαβ(q, k)

= ξe2
∫

d4q

(2π)4
d4p

(2π)4
(2π)4δ4(p1 + p2 − k − q)v̄(p2)γ

νu(p1)q
αΠνβXαβ(q, k),

(13.59)

where in the second equality, we used the fact /p1/q = pµ1q
νγµγν = pµ1q

ν(2gµν − γνγµ) =

2p1 · q − /q/p1, /q/q = q2, and p21 = m2
e. In the third equality, we used the Dirac equation.

Similarly, we can have

Mu = −ξe2
∫

d4q

(2π)4
d4p

(2π)4
(2π)4δ4(p1 + p2 − k − q)

× v̄(p2)
/q(/q − /p2 +me)

(q − p2)
2 −m2

e

γνu(p1)q
αΠνβXαβ(q, k)

= −ξe2
∫

d4q

(2π)4
d4p

(2π)4
(2π)4δ4(p1 + p2 − k − q)

× v̄(p2)
(q2 − 2p2 · q + /p2/q +me/q)

−2p2 · q + q2
γνu(p1)q

αΠνβXαβ(q, k)

= −ξe2
∫

d4q

(2π)4
d4p

(2π)4
(2π)4δ4(p1 + p2 − k − q)v̄(p2)γ

νu(p1)q
αΠνβXαβ(q, k).

(13.60)

Now, this is just opposite to the Mt channel. Thus, Mt +Mu = 0, which is exactly what
the gauge invariance required. Notice we only required the initial fermions to be on-shell
without ever invoking whether the photons are on-shell or not.
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Path integrals

14.1

We will use ϕ(x) =: ϕx, J(x) =: Jx, M(x, y) =:Mxy, and δ
4(x− y) =: δxy to save notation.∫

Dϕ∗Dϕ exp
{
i

∫
d4xd4y[ϕ∗

xMxyϕy] + i

∫
d4x[J∗

xϕx + ϕ∗
xJx]

}
=

∫
Dϕ∗Dϕ exp

{
i

∫
d4xd4y

[
ϕ∗
xMxyϕy + δxy(J

∗
xϕy + ϕ∗

xJy)
]}

= exp

{
−i
∫
d4xd4yJ∗

xM
−1
xy Jy

}∫
Dϕ∗Dϕ exp

{
i

∫
d4xd4y[(ϕ∗

x + J∗
xM

−1
xy )Mxy(ϕy +M−1

xy Jy)]

}
,

(14.1)

where, by definition,M−1
xy Mxy =MxyM

−1
xy = δxy. After redefining the fields to absorb the linear

shift, which doesn’t affect the integral measure as the path integral is supposed to be over the
whole field space, we get∫

Dϕ∗Dϕ exp
{
i

∫
d4xd4y[ϕ∗

xMxyϕy] + i

∫
d4x[J∗

xϕx + ϕ∗
xJx]

}
= exp

{
−i
∫
d4xd4yJ∗

xM
−1
xy Jy

}∫
Dϕ∗Dϕ exp

{
i

∫
d4xd4yϕ∗

xMxyϕy

}
= exp

{
−i
∫
d4xd4yJ∗

xM
−1
xy Jy

}∫
Dϕ1Dϕ2 exp

{
i

∫
d4xd4y(ϕ1(x)− iϕ2(x))Mxy(ϕ1(y) + iϕ2(y))

}
,

(14.2)

where we write out the the two real degrees of freedom of the complex fields.∫
Dϕ∗Dϕ exp

{
i

∫
d4xd4y[ϕ∗

xMxyϕy] + i

∫
d4x[J∗

xϕx + ϕ∗
xJx]

}
= exp

{
−i
∫
d4xd4yJ∗

xM
−1
xy Jy

}
×
∫

Dϕ1Dϕ2 exp

{
i

∫
d4xd4y

[
ϕ1(x)Mxyϕ1(y) + ϕ2(x)Mxyϕ2(y) + i(ϕ1(x)Mxyϕ2(y)− ϕ2(x)Mxyϕ1(y))

]}
(14.3)
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Now notice that the fields are really just classical fields inside the path integral. The variables x
and y are really dummy and symmetric if we switch them. Also, both ϕ1 and ϕ2 run through the
whole real field space. Therefore, the contributions from the

∫
Dϕ1Dϕ2 exp

{
−
∫
d4xd4yϕ1(x)Mxyϕ2(y)

}
and

∫
Dϕ1Dϕ2 exp

{∫
d4xd4yϕ2(x)Mxyϕ1(y)

}
must cancel each other. Also,

∫
Dϕ1 exp

{
i
∫
d4xd4yϕ1(x)Mxyϕ1(y)

}
and

∫
Dϕ2 exp

{
i
∫
d4xd4yϕ2(x)Mxyϕ2(y)

}
are actually the same. Thus,∫

Dϕ∗Dϕ exp
{
i

∫
d4xd4y[ϕ∗

xMxyϕy] + i

∫
d4x[J∗

xϕx + ϕ∗
xJx]

}
= exp

{
−i
∫
d4xd4yJ∗

xM
−1
xy Jy

}(∫
Dϕ1 exp

{
i

∫
d4xd4yϕ1(x)Mxyϕ1(y)

})2

= N 1

detM
exp

{
−i
∫
d4xd4yJ∗(x)M−1(x, y)J(y)

} (14.4)

14.2

(a) In scalar QED, the interaction Lagrangian is

Lint = −ieAµ
[
ϕ∗(∂µϕ)− (∂µϕ

∗)ϕ
]
+ e2A2

µ|ϕ|2. (14.5)

As the charge-conjugation C only swaps ϕ and ϕ∗, clearly, a transformation to the photon
field Aµ → −Aµ keeps the photon field’s kinetic term and the above interaction term
invariant.

(b)

⟨Ω|T{Aµ1(q1)...Aµn(qn)} |Ω⟩ =
1

Z[0]

∫
DAµDϕiDϕ∗

i e
i
∫
d
4
xL[A,ϕi]Aµ1(q1)...Aµn(qn)

=
1

Z[0]

∫
DAµDϕiDϕ∗

i e
i
∫
d
4
xL[A,ϕi](−1)nAµ1(q1)...Aµn(qn)

=
−1

Z[0]

∫
DAµDϕiDϕ∗

i e
i
∫
d
4
xL[A,ϕi]Aµ1(q1)...Aµn(qn)

= −⟨Ω|T{Aµ1(q1)...Aµn(qn)} |Ω⟩ ,
(14.6)

where we applied the charge conjugation on the second line and used the fact that n is odd
on the third line. Since the charge conjugation only swaps ϕ and ϕ∗ and gives a minus sign
to each Aµ, the integral measure and Z[0] is left unchanged by these transformation. Thus,
⟨Ω|T{Aµ1(q1)...Aµn(qn)} |Ω⟩ = 0.

(c) The above derivation never used any conditions on equation of motion. Therefore, Furry’s
theorem must hold even if the photons are off-shell.

(d) Assuming Weyl basis, when acting on spinors, the charge conjugation does

ψ
C−→ −iγ2ψ∗,

ψ∗ C−→ −iγ2ψ.
(14.7)
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However, since (−iγ2)(−iγ2) = (−i)2(γ2)2 = (−1)(−1) = 1, the integral measure and the
Lagrangian are still left invariant. The derivation then is just follows that in (b). Thus,
Furry’s theorem also holds in QED.

(e) The above derivation relies on the integral measure and the Lagrangian to be invariant
under the charge conjugation transformation. The Furry’s theorem does not in general
holds in the Standard model, especially considering loops involving gauge boson of weak
interaction. However, any fermionic diagrams or sub-diagrams with odd number of photons
attached still vanishe following Furry’s theorem, as these are just pure QED diagrams.

14.3

(a) We have

ϕ̂(x⃗) =

∫
d3p

(2π)3
1√
2ωp

(ape
ip⃗x⃗ + a†pe

−ip⃗x⃗), (14.8)

π̂(x⃗) = −i
∫

d3p

(2π)3

√
ωp
2
(ape

ip⃗x⃗ − a†pe
−ip⃗x⃗). (14.9)

Clearly,

1√
2ωp

(ωpϕ̂(x⃗) + iπ̂(x⃗)) =

∫
d3p

(2π)3
ape

ip⃗x⃗, (14.10)

and

1√
2ωp

(ωpϕ̂(x⃗)− iπ̂(x⃗)) =

∫
d3p

(2π)3
a†pe

−ip⃗x⃗. (14.11)

With an inverse Fourier transform,

ap =

∫
d3x

1√
2ωp

(ωpϕ̂(x⃗) + iπ̂(x⃗))e−ip⃗x⃗, (14.12)

a†p =

∫
d3x

1√
2ωp

(ωpϕ̂(x⃗)− iπ̂(x⃗))eip⃗x⃗. (14.13)

(b) Since,

|Φ⟩ =
∫

DΠ |Π⟩ ⟨Π|Φ⟩

=

∫
DΠe−i

∫
d
3
xΠ(x⃗)Φ(x⃗) |Π⟩ .

(14.14)
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such that,

π̂(x⃗) |Φ⟩ =
∫

DΠe−i
∫
d
3
xΠ(x⃗)Φ(x⃗)π̂(x⃗) |Π⟩

=

∫
DΠe−i

∫
d
3
xΠ(x⃗)Φ(x⃗)Π(x⃗) |Π⟩

=

∫
DΠDΦ′e−i

∫
d
3
xΠ(x⃗)Φ(x⃗)Π(x⃗)

∣∣Φ′〉 〈Φ′∣∣Π〉
=

∫
DΠDΦ′e−i

∫
d
3
xΠ(x⃗)[Φ(x⃗)−Φ

′
(x⃗)]Π(x⃗)

∣∣Φ′〉
= −i

∫
DΦ′ δ

δΦ′ (

∫
DΠe−i

∫
d
3
xΠ(x⃗)[Φ(x⃗)−Φ

′
(x⃗)]
∣∣Φ′〉)

= −i
∫

DΦ′ δ

δΦ′ (
∣∣Φ′〉 〈Φ′∣∣Φ〉)

= −i δ
δΦ

|Φ⟩

(14.15)

The procedures are just the field version of expressing the momentum operators in position
eigenspace in quantum mechanics.

(c) Just plugging the Eq. (14.12) into

0 = ⟨Φ| ap |0⟩

= ⟨Φ|
∫
d3x

1√
2ωp

(ωpϕ̂(x⃗) + iπ̂(x⃗))e−ip⃗x⃗ |0⟩

=

∫
d3x

1√
2ωp

(ωpΦ(x⃗) +
δ

δΦ(x⃗)
)e−ip⃗x⃗ ⟨Φ|0⟩ .

(14.16)

(d) Just plugging the Eq. (14.65) and Eq. (14.66) of the book into the above differential
equation. We can check explicitly∫
d3x

δ

δΦ(x⃗)
e−ip⃗x⃗ ⟨Φ|0⟩ = N

∫
d3xe−ip⃗x⃗

δ

δΦ(x⃗)
e−

1
2

∫
d
3
yd

3
zE(z⃗,y⃗)Φ(y⃗)Φ(z⃗)

= −N
∫
d3xe−ip⃗x⃗

∫
d3y′E(x⃗, y⃗′)Φ(y⃗′)e−

1
2

∫
d
3
yd

3
zE(z⃗,y⃗)Φ(y⃗)Φ(z⃗)

= −N
∫
d3x

∫
d3y′

∫
d3q

(2π)3
eix⃗(q⃗−p⃗)e−iq⃗y⃗

′
ωqΦ(y⃗

′)e−
1
2

∫
d
3
yd

3
zE(z⃗,y⃗)Φ(y⃗)Φ(z⃗)

= −N
∫
d3y′

∫
d3q

(2π)3
δ3(q⃗ − p⃗)e−iq⃗y⃗

′
ωqΦ(y⃗

′)e−
1
2

∫
d
3
yd

3
zE(z⃗,y⃗)Φ(y⃗)Φ(z⃗)

= −N
∫
d3y′e−ip⃗y⃗

′
ωpΦ(y⃗

′)e−
1
2

∫
d
3
yd

3
zE(z⃗,y⃗)Φ(y⃗)Φ(z⃗)

= −
∫
d3y′ωpΦ(y⃗

′)e−ip⃗y⃗
′
⟨Φ|0⟩ .

(14.17)

The y′ is just a dummy integration variable. Clearly, this satisfies
∫
d3x(ωpΦ(x⃗)+

δ
δΦ(x⃗)

)e−ip⃗x⃗ ⟨Φ|0⟩ =
0 and the Eq. (14.65) of the book is indeed the solution of the differential equation.
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(e)

E(x⃗, y⃗) =
∫

d3p

(2π)3
eip⃗(x⃗−y⃗)ωp

=
1

(2π)2

∫ 1

−1

d(cos θ)

∫ ∞

0

dpp2
√
p2 +m2eipr cos θ

=
1

2π2r

∫ ∞

0

dpp

√
p2 +m2 e

ipr − e−ipr

2i

=
1

2π2r

∫ ∞

0

dpp

√
p2 +m2 sin(pr)

= − 1

2π2r

∂

∂r

∫ ∞

0

dp

√
p2 +m2 cos(pr),

(14.18)

where r = |x⃗− y⃗|. Now, the integral can be expressed as a modified Bessel function of the
second kind ∫ ∞

0

dp

√
p2 +m2 cos(pr) = −m

r
K−1(mr). (14.19)

Thus,

E(x⃗, y⃗) = m

2π2r

∂

∂r
(
1

r
K−1(mr)) (14.20)

For m = 0,

E(x⃗, y⃗) = − 1

2π2r

∂

∂r

∫ ∞

0

dpp cos(pr)

= − 1

2π2r

∂2

∂r2

∫ ∞

0

dp sin(pr)

= − 1

2π2r

∂2

∂r2
(
1

r
)

= − 1

π2r4

(14.21)

14.4

(a) Expanding the fz(a
†) as a power series of a†, fz(a

†) = a0 + a1a
† + a2(a

†)2 + ..., where an
are coefficients. Then, notice

afz(a
†) |0⟩ = a(a0 + a1a

† + a2(a
†)2 + ...) |0⟩

= (a1(1 + a†a) + a2(1 + a†a)a† + ...) |0⟩
= (a1 + 2a2a

† + 3a3(a
†)2 + ...) |0⟩

=
d(fz(a

†))

da†
|0⟩

(14.22)
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Thus,

x̂ |ψ⟩ = z |ψ⟩
c(a+ a†)fz(a

†) |0⟩ = zfz(a
†) |0⟩

(
d(fz(a

†))

da†
+ a†fz(a

†)) |0⟩ = z

c
fz(a

†) |0⟩ .

(14.23)

We thus have a differential equation d(fz)

da
† + a†fz = z

c
fz, which has solution fz(a

†) =

Ne−
1
2
(a

†
)
2
+ z

c
a
†
, where N is some normalization constant.

To fix N , we can notice that
⟨0|ψ⟩ = ⟨0| fz |0⟩ = N. (14.24)

To solve for ⟨0|ψ⟩, we can use the differential equation Eq. (14.16) in problem 14.3. The
QM version of the differential equation is just

(ωz +
d

dx
) ⟨ψ|0⟩ = 0, (14.25)

which has solution ψ0 = ⟨ψ|0⟩ = N ′e−
1
2
ωz

2

, which is the famous ground state wavefunction
of a harmonic oscillator system. Requiring the ground state to be properly normalized

1 =

∫
dzψ0ψ

∗
0 = |N ′|2

∫
dze−ωx

2

= |N ′|2
√
π

ω
(14.26)

Thus,

fz(a
†) = (

ω

π
)
1
4 e−

1
2
(a

†
)
2
+
√
2ωza

†− 1
2
ωz

2

= (
ω

π
)
1
4 e−

1
2
(a

†−
√
2ωz)

2
+ωz

2

2 ,
(14.27)

where we replaced c = 1√
2ω

into the expression.

(b) To generalize the above construction to field theory, we shall do the following replacement

a†p → ϕ̂+(x) =

∫
d3p

(2π)3
1√
2ωp

a†pe
−ip⃗x⃗,

ap → ϕ̂−(x) =

∫
d3p

(2π)3
1√
2ωp

ape
ip⃗x⃗,

x̂→ ϕ̂(x) = ϕ̂+(x) + ϕ̂−(x).

(14.28)

And [
ϕ̂±(x), ϕ̂±(y)

]
= 0, (14.29)

Dxy ≡
[
ϕ̂−(x), ϕ̂+(y)

]
=

∫
d3p

(2π)3
1

2ωp
eip⃗(x⃗−y⃗), (14.30)

ϕ̂−(y) |0⟩ = 0, (14.31)
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where we used lower indices to denote coordinates.

Define f(ϕ̂+) as f(ϕ̂+) |0⟩ = |Φ⟩, where |Φ⟩ is the eigenstate of ϕ̂ such that ϕ̂(x) |Φ⟩ =
Φ(x) |Φ⟩. Expanding f(ϕ̂+) as

f(ϕ̂+) = a0 + a1

∫
dxϕ+(y) + a2

∫
dx

∫
dyϕ+(x)ϕ+(y) + ... (14.32)

With the same procedures as (a), we should arrive

ϕ̂−
x f(ϕ̂

+) = Dxy

d(f(ϕ̂+))

dϕ̂+
y

. (14.33)

Notice repeated indices are being integrated over here and in the following. Then,

ϕ̂x |Φ⟩ = (ϕ̂+
x + ϕ̂−

x )f(ϕ̂
+) |0⟩ = Φxf(ϕ̂

+) |0⟩

Dxy

d(f(ϕ̂+))

dϕ̂+
y

+ ϕ̂+
x f(ϕ̂

+) = Φxf(ϕ̂
+)

(14.34)

The solution to the differential equation is given by

f(ϕ̂+) = N exp

{
−(ϕ̂+

x − Φx)Exy(ϕ̂+
y − Φy) +

1

2
ΦxExyΦy

}
, (14.35)

where Exy is given by Eq. (14.66) of the book. It’s easy to check that this solution satisfies
the above differential equation and also has the correct boundary condition.

Dxy

d(f(ϕ̂+))

dϕ̂+
y

= −Dxy[δx′yEx′y′(ϕ̂
+

y
′ − Φy

′) + δy′y(ϕ̂
+

x
′ − Φx

′)Ex′y′ ]f(ϕ̂
+)

= −[DxyEyy′(ϕ̂
+

y
′ − Φy

′) +Dxy(ϕ̂
+

x
′ − Φx

′)Ex′y]f(ϕ̂
+).

(14.36)

Since

DxyEyy′ =
∫
dy

∫
d3p

(2π)3

∫
d3q

(2π)3
ωq
2ωp

eip⃗x⃗−iq⃗y⃗
′
eiy⃗(q⃗−p⃗)

=

∫
d3p

(2π)3

∫
d3q

(2π)3
ωq
2ωp

eip⃗x⃗−iq⃗y⃗
′
(2π)3δ3(q⃗ − p⃗)

=
1

2

∫
d3p

(2π)3
eip⃗(x⃗−y⃗

′
)

=
1

2
δ3
xy

′ ,

(14.37)

Dxy

d(f(ϕ̂+))

dϕ̂+
y

= −[
1

2
δ3
xy

′(ϕ̂+

y
′ − Φy

′) +
1

2
δ3
xx

′(ϕ̂+

x
′ − Φx

′)]f(ϕ̂+)

= −(ϕ̂+
x − Φx)f(ϕ̂

+),

(14.38)

which is clearly Eq. (14.34). Also |Φ⟩ = N exp
{
−(ϕ̂+

x − Φx)Exy(ϕ̂+
y − Φy) +

1
2
ΦxExyΦy

}
|0⟩

has the correct boundary condition.

⟨0|Φ⟩ = N exp

{
−1

2
ΦxExyΦy

}
, (14.39)
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which is exactly the Eq. (14.65) of the book and we have already shown in problem 14.3
that it is the right boundary condition.

(c) Similarly, we can construct the eigenstate of π̂ = π̂+ + π̂−, where

π̂+ = i

∫
d3p

(2π)3

√
ωp
2
a†pe

−ip⃗x⃗, π̂− = −i
∫

d3p

(2π)3

√
ωp
2
ape

ip⃗x⃗. (14.40)

[
π̂−(x), π̂+(y)

]
=

∫
d3p

(2π)3
ωp
2
eip⃗(x⃗−y⃗) =

1

2
Exy. (14.41)

So,

|Π⟩ = N exp
{
−2(π̂+

x − Πx)Dxy(π̂
+
y − Πy) + ΠxDxyΠy

}
|0⟩ . (14.42)

Also,

⟨0| π̂−
x ϕ̂

+
y |0⟩ = − i

2
δxy = −

[
π̂−
x , ϕ̂

+
y

]
. (14.43)

Also,[
−2(π̂−

x
′ − Πx

′)Dx
′
y
′(π̂−

y
′ − Πy),−(ϕ̂+

x − Φx)Exy(ϕ̂+
y − Φy)

]
= 2Dx

′
y
′Exy(

[
π̂−
x
′π̂

−
y
′ , ϕ̂

+
x ϕ̂

+
y

]
+
[
Πy

′ π̂−
x
′ +Πx

′π̂−
y
′ , ϕ̂

+
xΦy + Φxϕ̂

+
y

]
)

+ ...,

(14.44)

where (...) contains terms that have unequal number of π̂ and ϕ̂+, which when sandwiched

by |0⟩ vanish. Also notice the first term
[
π̂−
x
′ π̂

−
y
′ , ϕ̂

+
x ϕ̂

+
y

]
just produced infinite c-number

that can be absorbed into the normalization constant N . Thus, the only terms that we
need to calculate is just

2Dx
′
y
′Exy

[
Πy

′ π̂−
x
′ +Πx

′π̂−
y
′ , ϕ̂

+
xΦy + Φxϕ̂

+
y

]
)

= 2Dx
′
y
′Exy(Πy

′Φy

[
π̂−
x
′ , ϕ̂

+
x

]
+Πy

′Φx

[
π̂−
x
′ , ϕ̂

+
y

]
+Πx

′Φy

[
π̂−
y
′ , ϕ̂

+
x

]
+Πx

′Φx

[
π̂−
y
′ , ϕ̂

+
y

]
)

= iDx
′
y
′Exy(Πy

′Φyδx′x +Πy
′Φxδx′y +Πx

′Φyδy′x +Πx
′Φxδy′y)

= iDxy
′ExyΠy

′Φy + iDyy
′ExyΠy

′Φx + iDx
′
xExyΠx

′Φy + iDx
′
yExyΠx

′Φx

=
i

2
(δy′yΠy

′Φy + δy′xΠy
′Φx + δx′yΠx

′Φy + δx′xΠx
′Φx)

= 2iΠxΦx

(14.45)

Then, using the identities eA+B = eAeBe−
1
2
[A,B]

⟨Π|Φ⟩ = N ⟨0|0⟩ exp{−iΠxΦx} = exp{−iΠxΦx}, (14.46)

where ⟨0|0⟩ is properly normalized with respect to N . This is exactly the Eq. (14.21) of
the book. Eq. (14.22) thus follows.
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14.5

(a) The Lagrangian for scalar QED (cf. Eq. (9.11) of the book) is

L =
1

2
Aµ□

µνAν − ϕ∗(□+m2)ϕ− ieAµ
[
ϕ∗(∂µϕ)− (∂µϕ

∗)ϕ
]
+ e2A2

µ|ϕ|2. (14.47)

Under a field redefinition, Aµ(x) → Aµ(x) + εµ(x),

L → L+ εµ(x)
{
□µνAν − ie

[
ϕ∗(∂µϕ)− (∂µϕ

∗)ϕ
]
+ 2e2Aµ|ϕ|2

}
, (14.48)

where we only retain terms to first order in εµ. Now considering the correlation function
⟨Aαϕ∗ϕ⟩, we would find

⟨Aαϕ∗ϕ⟩ = 1

Z[0]

∫
DϕDϕ∗DAαei

∫
d
4
x[L+εµ(x){□µνAν−ie[ϕ

∗
(∂µϕ)−(∂µϕ

∗
)ϕ]+2e

2
Aµ|ϕ|

2})]

× [Aα(x1) + εα(x1)]ϕ
∗(x2)ϕ(x3)

=⇒ 0 =

∫
d4xεµ(x)

∫
DϕDϕ∗DAαeiS{□x

µνAν(x)Aα(x1)

+
[
−ie(ϕ∗(∂µϕ)− (∂µϕ

∗)ϕ) + 2e2Aµ|ϕ|2
]
Aα(x1)

+ iδ4(x− x1)gµα}ϕ∗(x2)ϕ(x3).

(14.49)

This gives the Schwinger-Dyson equation

□x
µν⟨Aν(x)Aα(x1)ϕ∗(x2)ϕ(x3)⟩ =

ie⟨ϕ∗(x)(∂µϕ(x))Aα(x1)ϕ
∗(x2)ϕ(x3)⟩ − ie⟨(∂µϕ∗(x))ϕ(x)Aα(x1)ϕ

∗(x2)ϕ(x3)⟩
− 2e2⟨Aµ(x)|ϕ(x)|2Aα(x1)ϕ∗(x2)ϕ(x3)⟩ − iδ4(x− x1)gµα⟨ϕ∗(x2)ϕ(x3)⟩

= e⟨jµ(x)Aα(x1)ϕ∗(x2)ϕ(x3)⟩ − iδ4(x− x1)gµα⟨ϕ∗(x2)ϕ(x3)⟩,
(14.50)

where now jµ = −i(ϕ∂µϕ∗ − ϕ∗∂µϕ)− 2eAµϕ
∗ϕ.

(b) We should consider the correlation function ⟨ϕ∗(x1)ϕ(x2)⟩. With a field redefinition of

ϕ(x) → e−iα(x)ϕ(x) and ϕ∗(x) → eiα(x)ϕ∗(x), the free (e = 0) scalar QED Lagrangian
transform as

L0 → L0 + i(∂µα)(ϕ
∗(∂µϕ)− (∂µϕ

∗)ϕ) + (∂µα)
2|ϕ|2, (14.51)

while

ϕ∗(x1)ϕ(x2) → eiα(x1)e−iα(x2)ϕ∗(x1)ϕ(x2). (14.52)

Following the same steps as in the Sec. 14.8.1 of the book, expanding to first order in α,
we arrive at∫

d4xα(x)i∂µ

∫
DϕDϕ∗eiS

[
ϕ∗(x)(∂µϕ(x))− (∂µϕ

∗(x))ϕ(x)
]
ϕ∗(x1)ϕ(x2)

=

∫
d4xα(x) [iδ(x− x1)− iδ(x− x2)]

∫
DϕDϕ∗eiSϕ∗(x1)ϕ(x2),

(14.53)
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which implies

∂µ⟨jµ0 (x)ϕ
∗(x1)ϕ(x2)⟩ = δ(x− x1)⟨ϕ∗(x1)ϕ(x2)⟩ − δ(x− x2)⟨ϕ∗(x1)ϕ(x2)⟩ (14.54)

for free theory (e = 0) and where jµ0 = −i(ϕ∂µϕ∗ − ϕ∗∂µϕ). However, when generalizing
higher-order correlation functions involving interaction with the photon fields, the situation
is quite different from that of spinor QED. While in spinor QED, the only interaction term
Aµψ̄γ

µψ is invariant under the field redefinition of the spinor fields, in scalar QED, the
interaction term −ieAµ

[
ϕ∗(∂µϕ)− (∂µϕ

∗)ϕ
]
part is not invariant under the similar field

redefinition to the scalar field. To see the effect in correlation function, we need to use the
full scalar QED Lagrangian and observe it transforms as

L → L+ i(∂µα)(ϕ
∗(∂µϕ)− (∂µϕ

∗)ϕ) + (∂µα)
2|ϕ|2 − 2e(∂µα)Aµ|ϕ|2. (14.55)

Then similar procedure leads to

∂µ⟨jµ(x)ϕ∗(x1)ϕ(x2)⟩ = δ(x− x1)⟨ϕ∗(x1)ϕ(x2)⟩ − δ(x− x2)⟨ϕ∗(x1)ϕ(x2)⟩, (14.56)

where now jµ = −i(ϕ∂µϕ∗ − ϕ∗∂µϕ) − 2eAµϕ
∗ϕ, in consistence with the results in (a). It

should be noticed that the scalar QED current in free theory is not gauge-invariant and thus,
not physical. Only if one include the photon field, does the current become gauge-invariant
and physical.
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Chapter 15

The Casimir effect

15.1

The Gaussian regulator is

E(r) =
1

2

∑
n

ωne
−(

ωn
πΛ

)
2

(15.1)

Expanding with ωn = π
r
n:

E(r) =
1

r

π

2

∞∑
n=1

ne−( n
rΛ

)
2

=
1

r

π

2

∞∑
n=1

ne−(ϵn)
2

, ϵ =
1

Λr
≪ 1. (15.2)

Now using the Euler-Maclaurin series to calculate the sum:
∞∑
n=1

neϵ
2
n
2

−
∫ ∞

0

neϵ
2
n
2

dn = − 1

12
+O

(
ϵ2
)

∞∑
n=1

neϵ
2
n
2

=
1

2ϵ2
− 1

12
+O

(
ϵ2
) (15.3)

Then

E(r) =
π

4
rΛ2 − π

24r
+O

(
1

r2Λ

)
(15.4)

F (a) = − d

da
[E(L− a) + E(a)] = − d

da

[
π

4
LΛ2 − π

24
(

1

L− a
+

1

a
) + . . .

]
=

π

24
(

1

(L− a)2
− 1

a2
) + . . .

(15.5)

Now take L→ ∞ and we again get

F (a) = − πℏc
24a2

(15.6)

15.2

Simply take a look on (12.67) of the book,

E =
∑
s

[∫
d3q

(2π)3
ωp(a

s†
p a

s
p + bs†p b

s
p)− V ε0

]
. (15.7)
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It’s easy to see that the zero-point energy is negative while for bosons, the zero-point energy
is positive. The argument would then follow similarly as the scalar case in the book except an
overall sign flipped, which makes the final answer of the Casimir force to have an opposite sign
than from bosons.

15.3

A ∼ (0.5µm)2 ≈ 2.5 × 10−13m2. Assuming the length of each setate is about 5nm. Plugging
these values into the 3-d Casimir force formula from (15.22) of the book, each setate would

provide a force around F ∼ π
2ℏc

240a
4A ∼ 0.5µN . With a million of setates on each foot and a

gecko has four feet, these would provide a force about 2 N, which should be enough to hold a
gecko weight up to 200g to climb on walls.

15.4

By simple dimensional analysis, since the mass contributes positively with respect to the energy
and has inverse dimension with the length of small box a, it’s expected that the effect of mass
would lead to a term of Casimir force that is opposite to that of a purely massless field. In
other words, the mass should introduce a repulsive term in the Casimir force. For a massive
scalar fields in d dimensions between two plates separated by a distance a, the energy for its
n−th mode

ωk =

√
(
nπ

a
)2 + k2T +m2, (15.8)

where kT is the momentum for transverse modes with respect to the dimension on where we
placed the cavity. Thus, the total ground states energy for a d dimensional box with width L
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on each sides is

E = Ld−1

∫
dd−1(kT )

(2π)d−1

∑
n=1

1

2
ωk

= (
L

2π
)d−1

∫
dΩd−1

∫
dkTk

d−2
T

∑
n=1

1

2
ωk

= (
L

2π
)d−12π

(d−1)/2

Γ(d−1
2
)

1

2

∫ ∞

0

d(k2T )(k
2
T )

d−3
2
1

2

∑
n=1

√
(
nπ

a
)2 + k2T +m2

= (
L

2π
)d−12π

(d−1)/2

Γ(d−1
2
)

1

2

∫ ∞

0

d(k2T )(k
2
T )

d−3
2
1

2

∑
n=1

√
(
nπ

a
)2 +m2

√
1 +

k2T

(nπ
a
)2 +m2

= (
L

2π
)d−12π

(d−1)/2

Γ(d−1
2
)

1

4

∑
n=1

((
nπ

a
)2 +m2)

d
2

∫ ∞

0

d(
k2T

(nπ
a
)2 +m2 )(

k2T

(nπ
a
)2 +m2 )

d−3
2

√
1 +

k2T

(nπ
a
)2 +m2

= (
L

2π
)d−12π

(d−1)/2

Γ(d−1
2
)

1

4

∑
n=1

((
nπ

a
)2 +m2)

d
2β(

d− 1

2
,−d

2
)

= (
L

2π
)d−12π

(d−1)/2

Γ(d−1
2
)

1

4

∑
n=1

((
nπ

a
)2 +m2)

d
2
Γ(d−1

2
)Γ(−d

2
)

Γ(−1
2
)

= (
L

2π
)d−12π

(d−1)/2

Γ(d−1
2
)

1

4

∑
n=1

((
nπ

a
)2 +m2)

d
2
Γ(d−1

2
)Γ(−d

2
)

Γ(−1
2
)

= −(
L

2
)d−1Γ(−d

2
)

4

∑
n=1

((
n

a
)2π +

m2

π
)
d
2 ,

(15.9)

where we have used one of the defining integral of β function to do the integral β(a, b) =∫∞
0

t
a−1

(1+t)
a+bdt.

Now it’s quite clear that for any positive d, the sum is divergent, so we must find an analytic
continuity to positive d and extract the divergent part, so let’s start with negative d first,

E = −(
L

2
)d−1Γ(−d

2
)

4

∞∑
n=1

1

((n
a
)2π + m

2

π
)−

d
2

= −(
L

2
)d−11

4

∞∑
n=1

∫ ∞

0

x−
d
2
−1e−((n

a
)
2
π+m

2

π
)xdx.

(15.10)

Now notice that the infinite sum can be turned into a form involving Jacobi theta function and
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then applied with Jacobi identities

ψ
(x
a

)
=

∞∑
n=1

e−(n
a
)
2
πx

=
1

2
[θ3(0; e

−πx

a
2 )− 1]

=
1

2
[ϑ00(0;

ix

a2
)− 1]

=
1

2

[
a√
x
ϑ00(0;

ia2

x
)− 1

]
=

a√
x
(

∞∑
n=1

e−
n
2
πa

2

x ) +
a

2
√
x
− 1

2
.

(15.11)

Put this back,

E = −(
L

2
)d−11

4

[
a

∞∑
n=1

(

∫ ∞

0

x−
d+3
2 e−

n
2
πa

2

x
−m

2

π
xdx) +

a

2

∫ ∞

0

x−
d+3
2 e−

m
2

π
xdx− 1

2

∫ ∞

0

x−
d
2
−1e−

m
2

π
xdx

]

= −(
L

2
)d−11

4

[
a(
m2

π
)
d+1
2

∞∑
n=1

2K d+1
2
(2man)

(man)
d+1
2

+
a

2
(
m2

π
)
d+1
2 Γ(−d+ 1

2
)− 1

2
(
m2

π
)
d
2Γ(−d

2
)

]
,

(15.12)

whereK is the modified Bessel function and we have usedKν(z) =
1
2
(1
2
z)ν
∫∞
0

exp
{
−t− z

2

4t

}
dt

t
ν+1 .

The d in first term can be taken smoothly into positive number, so all the divergent parts due to
positive dimensions have been moved into second and third term. For space dimension d = 3,
the second term has simple pole and is not physical, while the third term has no a dependence
and thus is irrelevant to the calculation of Casimir force. Only the first term is relevant,

E = −L
2m2

8π2a

∞∑
n=1

K2(2man)

n2 + ... (15.13)

For limiting case m≪ a−1, we can expand the modified Bessel function K2(2man) =
1

2(man)
2 −

1
2
+O(m2), so

E ≈ − L2

16π2a3

∞∑
n=1

1

n4 +
L2m2

16π2a

∞∑
n=1

1

n2 + ...

= − L2

16π2a3
ζ(4) +

L2m2

16π2a
ζ(2) + ...

= − L2π2

1440a3
+
L2m2

96a
....

(15.14)

The Casimir force for m≪ a−1 limit is then,

F (a) = −dE
da

= − L2π2

480a4
+
L2m2

96a2
. (15.15)
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Notice the first term is exactly the result of a massless field as the Eq. (15.22) of the book.
The factor of 2 is due to the book has accounted for the two photon polarizations. The second
term is how the mass of particle would modify the Casimir force, which is a repulsive force as
expected.

For m ≫ a−1, the asymptotic behaviour of the modified Bessel function is K2(2amn) −→√
π

4amn
e−2amn. Thus

E −→ L2m2

16π2a

√
π

am

∞∑
n=1

e−2amn

n
5
2

=
L2m2

16π2a

√
π

am
Li 5

2
(e−2am) −→ L2m2

16π2a

√
π

am
e−2am, (15.16)

where Li is the polylogarithm and has the limiting behaviour lim|z|−→0 Lis(z) = z.
The Casimir energy and so is the Casimir force at this limit is exponentially small (but the

force is clearly still repulsive), which corresponds to the classical limit when the mass is very
large.
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Vacuum polarization

16.1

• Scalar Case:

Starting from (16.24) of the book,

iΠµν
2 = −e2

∫
d4k

(2π)4
−4kµkν + 2pµkν + 2pνkµ − pµpν + 2gµν [(p− k)2 −m2]

[(p− k)2 −m2 + iε][k2 −m2 + iε]
(16.1)

After manipulating with the Feynman parameters and doing the shift kµ → kµ+pµ(1−x),
the terms that can potentially contribute to the pµpν are

Πµν
2 = ie2

∫
d4k

(2π)4
−4pµpν(1− x)2 + 4pµpν(1− x)− pµpν

[k2 + p2x(1− x)−m2 + iε]2
+ gµνterm

= ie2
∫

d4k

(2π)4
pµpν(−4x2 + 4x− 1)

[k2 + p2x(1− x)−m2 + iε]2
+ gµνterm

= −2
e2

(4π)d/2
pµpνΓ(2− d

2
)µ4−d

∫ 1

0

dx(−2x2 + 2x− 1

2
)(

1

∆
)2−

d
2 + gµνterm

= −2
e2

(4π)d/2
pµpνΓ(2− d

2
)µ4−d

∫ 1

0

dx

[
−x(2x− 1) + (x− 1

2
)

]
(
1

∆
)2−

d
2 + gµνterm,

(16.2)

with ∆ = m2 − p2x(1 − x). Now notice that if we do a linear shift x → x + 1
2
for the

second term under the integral,∫ 1

0

dx(x− 1

2
)(

1

∆
)2−

d
2 =

∫ 1/2

−1/2

x

(
1

m2 − p2(x+ 1
2
)(1

2
− x)

)
= 0,

(16.3)

which vanishes due to oddness. Thus we have

Πµν
2 = −2

e2

(4π)d/2
pµpνΓ

(
2− d

2

)
µ4−d

∫ 1

0

dx[−x(2x− 1)]

(
1

∆

)2− d
2

+ gµνterm, (16.4)

Compared with (16.38) of the book, this is consistent with the Ward identity.
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• Spinor Case:

Starting from Eq. (16.42) of the book. We can see the numerator terms that could
contribute to the pµpν are

N = 4[−pµkν − kµpν + 2kµkν ] (16.5)

After the shifting kµ → kµ + pµ(1− x), then dropping the linear pµ and pν terms as they
are odd under k → −k, the non-zero terms still contributing to the pµpν are

N = 8pµpν(1− x)2 − 8pµpν(1− x) = −8pµpνx(1− x) (16.6)

Then,

Πµν
2 = 8ie2

∫
d4k

(2π)4
−pµpνx(1− x)

[k2 + p2x(1− x)−m2 + iε]2
+ gµνterm

= 8
e2

(4π)d/2
pµpνΓ(2− d

2
)µ4−d

∫ 1

0

dx(1− x)x(
1

∆
)2−

d
2 + gµνterm

=
−8e2

(4π)d/2
(p2gµν − pµpν)Γ(2− d

2
)µ4−d

∫ 1

0

dx(1− x)x(
1

∆
)2−

d
2 ,

(16.7)

where δ = m2 − p2x(1− x). Again, the result is consistent with Ward identity.

16.2

Notice that the momentum space potential Eq. (16.56) is rotationally invariant, so we can take
the results from the Eq. (3.64) of the book, taking the Born approximation:

V (r) =
ie2

8π2r

∫ ∞

−∞
dp

1− e2[Π2(p
2)− Π2(0)]

p+ iε
e−ipr. (16.8)

One should then close the contour down to perform the integral. For the leading order, this
just gives the usual Coulomb potential

V (r) =
ie2

8π2r
(−2πi)(−e−εr) = − e2

4πr
. (16.9)

Now for the correction term, there is also a contribution from the branch cut of the log function.
Due to the prefactor if the i in front of the integral and the fact that the potential, as an
observable must be real, the contribution can only come from the imaginary part of Π2(p

2) −
Π2(0) (this is actually a result of spectral representation. See Sec. 24.2 of the book). From the
the Eq. (16.55) of the book,

I(p2) ≡ Π2(p
2)− Π2(0) = − 1

2π2

∫ 1

0

dxx(1− x) ln

[
m2 − p2x(1− x)

m2

]
. (16.10)

Since the maximum of the x(1 − x) is 1
4
, in the case if p2 is space-like or if p2 is time-like but

p < 2m, the logarithmic contribution is always real, the contribution can only come from the
region where p ≥ 2m. Using the Eq. (24.19) of the book: ln (−A− iε) = lnA− iπ,

Im[I(p2 + iε)] = − 1

2π

∫ 1

0

dxx(1− x)θ(p2x(1− x)−m2). (16.11)
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Chapter 16. Vacuum polarization

For a given p2, the non-zero contribution of the step function comes from the region between

x = 1
2
± 1

2

√
1− 4m

2

p
2 . Thus,

Im[I(p2 + iε)] = − 1

2π

∫ 1
2
+ 1

2

√
1−4m

2

p
2

1
2
− 1

2

√
1−4m

2

p
2

dxx(1− x)θ(p− 2m)

= − 1

2π

∫ 1
2

√
1−4m

2

p
2

− 1
2

√
1−4m

2

p
2

du(
1

4
− u2)θ(p− 2m)

= − 1

8π

√
1− 4

m2

p2

[
1− 1

3
(1− 4

m2

p2
)

]
θ(p− 2m)

= − 1

12π

√
1− 4

m2

p2

[
1 +

2m2

p2

]
θ(p− 2m),

(16.12)

where we have changed variable u = x − 1
2
on the second line. Plugging this back to the Eq.

(16.8), and also do a rotation p→ −ip to get the branch cut, we shall arrive at

V (r) = − e2

4πr
− e4

2π2r

∫ ∞

2m

dp
1

12π

√
1− 4

m2

p2

[
1 +

2m2

p2

]
e−pr

p

= − e2

4πr

(
1 +

e2

6π2

∫ ∞

1

dxe−2mrx2x
2 + 1

2x4

√
x2 − 1

)
,

(16.13)

where we changed the variable on the second line p = 2mx.
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Chapter 17

The anomalous magnetic moment

17.1

(a) The muon g − 2 only receives correction from vertex correction. Given the Lagrangian of
Eq. (17.33) of the book, there is only one vertex correction diagram involving the smuons
and the photino that can contribute. It is shown in Fig. 17.1. The smuon is a scalar
whose interaction with photon has exactly the same form and sign as the case of scalar
QED Lagrangian described by the Eq. (9.11) of the book. Thus, we can use the results of
Chapter 9 to determine its Feynman rule. Thus, we can write down the loop integral:

iMµ
2 = −(ig)3

∫
d4k

(2π)4
ū(q2)

i( /q1 − /k +mÃ)

(q1 − k)2 −m2
Ã + iε

i

(p+ k)2 −m2
µ̃ + iε

(pµ + 2kµ)
i

k2 −m2
µ̃ + iε

u(q1)

= g3
∫

d4k

(2π)4
ū(q2)

( /q1 − /k +mÃ)(p
µ + 2kµ)

[(q1 − k)2 −m2
Ã + iε][(p+ k)2 −m2

µ̃ + iε][k2 −m2
µ̃ + iε]

u(q1).

(17.1)

The minus sign in front of the first line comes from the interaction term of scalar QED.
Using the Feynman parameters, the new denominator is the cube of

(kµ + ypµ − zqµ1 )
2 −∆+ iε (17.2)

with
∆ = −xyp2 + zm2

Ã + (1− z)m2
µ̃ − z(1− z)m2

µ. (17.3)

Shifting kµ → kµ − ypµ − zqµ1 , the numerator becomes

Nµ = ū(q2)(/q1 − /k + y/p− z /q1 +mÃ)(p
µ + 2kµ − 2ypµ + 2zqµ1 )u(q1)

= ū(q2)[(1− z)mµ + /k +mÃ][(1− 2y)pµ + 2kµ + 2zqµ1 ]u(q1)

=
k2

2
ū(q2)γ

µu(q1) + ū(q2)[(1− z)mµ +mÃ][(x− y)(qµ2 − qµ1 ) + z(qµ1 + qµ2 )]u(q1)

=

[
k2

2
+ 2z(1− z)m2

µ + 2zmµmÃ

]
ū(q2)γ

µu(q1)

− i
[
z(1− z)mµ + zmÃ

]
pν ū(q2)σ

µνu(q1)

+
[
(1− z)mµ +mÃ

]
(x− y)pµū(q2)u(q1).

(17.4)

147



Chapter 17. The anomalous magnetic moment

Again, the pµ term’s integrand is antisymmetric under x ↔ y, but the integral measure
is symmetric, so this term vanishes. The terms involving γµ only renormalize the electric
charge. Therefore, for the magnetic moment, we shall have (replacing g → e)

iMµ
2 = pν ū(q2)σ

µνu(q1)

[
−2ie3

∫ 1

0

dxdydzδ(x+ y + z − 1)

∫
d4k

(2π)4
z(1− z)mµ + zmÃ

(k2 −∆+ iε)3

]
+· · · .

(17.5)
Then,

F2(p
2) =

2mµ

e
(−2ie3)

∫ 1

0

dxdydzδ(x+ y + z − 1)
−i[z(1− z)mµ + zmÃ]

32π2[−xyp2 + zm2
Ã + (1− z)m2

µ̃ − z(1− z)m2
µ]
.

(17.6)

At p2 = 0,

F2(0) = −
mµe

2

8π2

∫ 1

0

dxdydzδ(x+ y + z − 1)
z(1− z)mµ + zmÃ

zm2
Ã + (1− z)m2

µ̃ − z(1− z)m2
µ

= − α

2π
mµ

∫ 1

0

dz
z(1− z)2mµ + z(1− z)mÃ

zm2
Ã + (1− z)m2

µ̃ − z(1− z)m2
µ

.

(17.7)

Assuming mµ ≪ mµ̃ ≈ mÃ, this becomes

F2(0) = − α

2π

mµ

mµ̃

∫ 1

0

dzz(1− z)

= − α

12π

mµ

mµ̃

.

(17.8)

Then, since g = 2 + 2F2(0), the contribution to magnetic moment caused by smuon and
photino is

gSUSY = gSM − α

6π

mµ

mµ̃

. (17.9)

Observe that there is an interesting limit if the supersymmetry is restored1 on Eq. (17.7)
such that the mass of each particles is the same as their super-partner’s (mµ̃ = mµ and
mÃ = mA = 0), we have

F2(0) = − α

2π

∫ 1

0

dz
z(1− z)2m2

µ

(1− z)2m2
µ

= − α

2π

∫ 1

0

dzz

= − α

4π
.

(17.10)

Compared this with the Eq. (17.31) of the book, we can observe that this is exactly half
of the contribution of the SM muon-photon loop. In fact, there should be two smuons µ̃1

and µ̃2 since in SUSY, the Fermionic degree of freedom is equal to the Bosonic degree of

1SUSY must be broken for the particles and their super-partners to have different masses.
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Chapter 17. The anomalous magnetic moment

q1

p

γ̃

µ̃

k
q1 − k

q2

µ̃

p+ k

µ− µ−

γ

Fig. 17.1: Vertex correction of muon g − 2 from SUSY particles.

freedom within a supermultiplet. Therefore, each fermion actually has two scalar super-
partners corresponding to the left-handed and right-handed chirality. As result, one should
add a factor of 2 to the above result, and concludes that in the limit of unbroken SUSY:

g = 2 + 2F SM
2 (0) + 2F SUSY

2 (0) = 2 + 2× α

2π
− 2× 2× α

4π
= 2. (17.11)

The profound result is that in the SUSY limit, the loop corrections from the
SM particles cancel exactly with the loop corrections from their super-partners.
The opposite contribution is really on a fundamental ground due to spin statistics and is the
reason why the SUSY can stabilize the mass of Higgs boson from receiving large radiative
correction. Please also see Ref. [4] for a more general derivation on how SUSY precludes
the Pauli term as such term is not SUSY-invariant.

(b) I found the parts (b) and (c) of this problem are not sensible. The reason is that aEXP
µ > aSMµ

where aµ ≡ gµ−2

2
. Yet, from my discussion above, the SUSY contribution from smuon-

photino should further diminish the SM muon-photon contribution, which is an essential
point. Notice this does not mean the SUSY has already been ruled out since there are
other SUSY contributions to the muon anomalous magnetic moment that increases the
anomaly. The picture in Minimal Supersymmetric Standard Model (MSSM) is actually a
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Chapter 17. The anomalous magnetic moment

bit more complicated. After electroweak symmetry breaking, the particles having the same
quantum number mix together. Therefore, the photino is not a physical states. Instead, the
neutral superpartners of SM gauge bosons (electroweakino) mix and form four neutralinos
(and usually, one of them has a ”negative” mass, which could also flip the sign of the
contribution of the Eq. (17.7) if this neutralino is much lighter than the others). In MSSM,
the muon also has trilinear interaction with a sneutrino and a chargino and thus, there are
also contributions from the chargino-sneutrino-chargino (which is usually opposite to the
above smuon-neutralino-smuon contribution).

It might also be interesting to notice that while aEXP
µ > aSMµ

2, the electron aEXP
e < aSMe [6].

(c) See discussions in (b).

2At the point of writing, this anomaly is already at a level of 5.1σ [5]. The anomaly, however is debatable
as the anomaly seems to be consistent with the lattice results.
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Chapter 18

Mass renormalization

18.1

(a) At one-loop level of scalar QED, a scalar has two kinds of self-energy graphs shown in Fig.
18.1.

Let m denotes the mass of the scalar. The graph (a) can be evaluated as

iΣ2,a(p
2) = (−ie)2

∫
d4k

(2π)4
(pµ + kµ)

i

k2 −m2 + iε
(pµ + kµ)

−i
(k − p)2 + iε

= −e2
∫

d4k

(2π)4

∫ 1

0

dx
p2 + k2 + 2p · k

[(k2 −m2)(1− x) + (p− k)2x+ iε]2
.

(18.1)

Shifting k → k + px gives

iΣ2,a(p
2) = −e2

∫ 1

0

dx

∫
d4k

(2π)4
k2 + p2(1 + x)2

[k2 −∆+ iε]2
, (18.2)

where ∆ = (1− x)(m2 − p2x) and we have dropped the terms linear in k in the numerator
since it is odd under k → −k and their integral therefore vanish.

In dimensional regularization, in d = 4− ε dimensions, the loop is

Σ2,a(p
2) = ie2µ4−d

∫ 1

0

dx

∫
ddk

(2π)d
k2 + p2(1 + x)2

(k2 −∆+ iε)2

= − e2

(4π)d/2
µ4−d

∫ 1

0

dx

[
−d
2

1

∆1− d
2

Γ

(
1− d

2

)
+ p2(1 + x)2

1

∆2− d
2

Γ

(
2− d

2

)]
= − e2

(4π)d/2
µ4−dΓ

(
2− d

2

)∫ 1

0

dx

[
−d
2

∆

∆2− d
2

1

1− d
2

+ p2(1 + x)2
1

∆2− d
2

]

= − e2

(4π)d/2
µ4−dΓ

(
2− d

2

)∫ 1

0

dx
d
d−2

(1− x)(m2 − p2x) + p2(1 + x)2[
(1− x)(m2 − p2x)

]2− d
2

,

(18.3)

where we used Γ
(
2− d

2

)
=
(
1− d

2

)
Γ
(
1− d

2

)
. Expanding d = 4 − ε we get, in the ε → 0

limit, first notice that d
d−2

= 1 + 2
d−2

= 1 + 1
1− ε

2
→ 2 + ε

2
+ O(( ε

2
)2) and thus the whole
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p k

p− k

p

(a)

p p

k

(b)

Fig. 18.1: Scalar QED self-energy graphs for a scalar.

integral becomes

Σ2,a(p
2) = − α

4π

∫ 1

0

dx
[
(2 +

ε

2
)(1− x)(m2 − p2x) + p2(1 + x)2

] [2
ε
+ ln

µ̃2

(1− x)(m2 − p2x)

]
= − α

4π

{
2m2

ε
+

4p2

ε
+
m2

2
− p2

6

+

∫ 1

0

dx[2(1− x)m2 + (3x2 + 1)p2] ln
µ̃2

(1− x)(m2 − p2x)

}
.

(18.4)

The graph (b) can be evaluated (in d dimensions) as

iΣ2,b(p
2) = 2ie2d

∫
ddk

(2π)d
−i

k2 + iε
= 0, (18.5)

where we used the contraction of the metric tensor gµνgµν = d. Now, this is a scaleless
integral and is both UV and IR divergent and thus formally vanishes in dimensional
regularization. One can refer to the discussion of Section 26.4.3 of the book. The graph
therefore has no contribution to the radiative correction. From now on, we will drop the
subscript a from Σ2,a(p

2) since graph (a) is the only self-energy graph that can contribute
under dimensional regularization.

(b) The bare Green’s function the renormalized Green’s function are still related as

iGR(p2) =
1

1 + δ2
iGbare(p2) =

i

p2 −m2
R + δ2p

2 − (δ2 + δm)m
2
R + Σ2(p

2) + · · ·
, (18.6)

where the mass counterterm is defined through m2
0 = Zmm

2
R. The pole mass is defined by

the pole of the Green’s function:

ΣR(m
2
P ) = m2

R −m2
P , (18.7)

where ΣR(p
2) = Σ2(p

2) + δ2p
2 − (δm + δ2)m

2
R +O(e4).
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Chapter 18. Mass renormalization

(c) • On-shell:

For the on-shell subtraction scheme, m2
R = m2

P and thus,

δm =
1

m2
P

Σ2(m
2
P )

= −3α

4π

(
2

ε
+ ln

µ̃2

m2
P

+
7

3

)
.

(18.8)

It should be noticed that the Σ′
2(mP ), just like the Eq. (18.50) of the book, has infrared

divergence, and should be regulated with a photon mass mγ. This just changes ∆ to

∆ = (1−x)(m2
P − p2x)+xm2

γ (since we will only keep the leading terms in mγ, which
is from logarithmic term and the mγ from outside the logarithmic term must be in
higher orders) so that

Σ2(p
2) = − α

4π

{
2m2

ε
+

4p2

ε
+
m2

2
− p2

6

+

∫ 1

0

dx[2(1− x)m2 + (3x2 + 1)p2] ln
µ̃2

(1− x)(m2 − p2x) + xm2
γ

}
.

(18.9)

Thus,

δ2 = −Σ′
2(m

2
P )

=
α

4π

(
4

ε
− 1

6
+ 2 ln

µ̃2

m2
P

+
17

3
− 11

2
− 2 ln

m2
γ

m2
P

)

=
α

2π

(
2

ε
+ ln

µ̃2

m2
γ

)
.

(18.10)

• MS:

For MS, the counterterms are simply just the divergent parts plus the constant terms
that convert µ̃ back to µ. Therefore,

δm = −3α

4π

(
2

ε
+ ln

(
4πe−γE

))
, (18.11)

δ2 =
α

2π

(
2

ε
+ ln

(
4πe−γE

))
. (18.12)
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Chapter 19

Renormalized perturbation theory

19.1

The bare Lagrangian of scalar QED is

L = −1

4
(∂µA

0
ν−∂νA0

µ)−ϕ0∗(□+m2
0)ϕ

0−ie0A0
µ

[
ϕ0∗ (∂µϕ0

)
−
(
∂µϕ

0∗)ϕ0
]
+e20(A

0
µ)

2|ϕ0|2. (19.1)

Renormalizing the field strength, mass, and the charge (”R” omitted for the renormalized
fields):

ϕ0 =
√
Z2ϕ, A

0
µ =

√
Z3Aµ, m0 = ZmmR, e0 = ZeeR. (19.2)

Also, just like the case in spinor QED, we can also define a Z1 ≡ ZeZ2

√
Z3, which encodes

the renormalization of the 3-point interaction. Notice that the renormalization of the 4-point
interaction is completely fixed by orther renormalization factors:

Z4-point = Z2
eZ2Z3. (19.3)

Expanding the renormalizations around their classical tree-level values let us to extract the
counterterms. For the 4-point interaction, its counterterm is totally fixed by:

δ4-point = 2δe + δ2 + δ3 +O(e4R) = 2δ1 − δ2 +O(e4R), (19.4)

where we used the fact that δe = δ1 − δ2 − 1
2
δ3 +O(e4R). Since δ1 = δ2 (which will be proven in

the Problem ?? and explicitly calculate below),

δ4-point = δ1. (19.5)

After the expansions, the Lagrangian becomes

L = −1

4
F 2
µν − ϕ∗(□+m2

R)ϕ− ieRAµ
[
ϕ∗ (∂µϕ)− (∂µϕ∗)ϕ]+ e2RA

2
µ|ϕ|2

− 1

4
δ3F

2
µν − δ2ϕ

∗□ϕ− (δm + δ2)mR|ϕ|2 − ieRδ1Aµ
[
ϕ∗ (∂µϕ)− (∂µϕ∗)ϕ]+ δ1e

2
RA

2
µ|ϕ|2.
(19.6)

We can read off the Feynman rules from the counterterms.
A counterterm on a photon line is the same as the Eq. (19.14) of the book.
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Chapter 19. Renormalized perturbation theory

A counter term on a scalar line gives the vertex

= i(p2δ2 − (δm + δ2)m
2
R). (19.7)

There is a 3-point vertex counterterm:

q1

q2

= −ieRδ1(qµ1 + qµ2 ). (19.8)

There is also a 4-point vertex counterterm:

= 2ie2Rδ1gµν . (19.9)

• Photon 2-point function:

We will stick with the dimensional regularization for this question. Starting with renor-
malizing the 2-point functions. The photon self-energy graph in scalar QED has already
been evaluated in the Chapter 16 of the book and Problem 16.1. We quote the results from
the Eq. (16.39) of the book (with appropriate factor out of the tree-level propagator):

Π2(p
2) =

1

8π2

∫ 1

0

dxx(2x− 1)

[
2

ε
+ ln

(
µ̃2

m2 − p2x(1− x)

)]
. (19.10)

At order e2R,
Π(p2) = e2RΠ2(p

2) + δ3 + · · · . (19.11)

The on-shell renormalization condition for the photon in scalar QED is then still

Π(0) = 0. (19.12)

Thus,

δ3 = −e2RΠ2(0) = − e2R

8π2

(
1

3
+

1

6
ln

µ̃2

m2
R

)
. (19.13)

• Scalar 2-point function:

Then, there is the scalar 2-point function, which we have already evaluated in the Problem
18.1 and we just quote results from Eq. (18.8) and Eq. (18.10) and remember the on-shell
condition that m2

R = m2
P :

δm = −3e2R
16π

(
2

ε
+ ln

µ̃2

m2
R

+
7

3

)
. (19.14)
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and

δ2 =
e2R
8π

(
2

ε
+ ln

µ̃2

m2
γ

)
. (19.15)

• 3-point function:

Next, we shall renormalize the three-point functions of scalar QED. Notice that the in
scalar QED, there is no Pauli moment term, the form factor is related with the vertex
correction as

Γµ(p) = F1(p
2)(qµ1 + qµ2 ) (19.16)

with pµ = qµ2 − qµ1 and F1(p
2) = 1 + f(p2) + δ1 +O(e4R). At leading order:

F1(p
2) = 1. (19.17)

At NLO e2R, the form factors of the vertex get contributions from the following amputated
graphs:

−ieRΓµ = 1PI

= + +

+ + + · · · .

(19.18)

Evaluating

iMµ =
q1

p

k

q2 − k

q2

= (−ie)(2ie2gµν)
∫

d4k

(2π)4
−igνα

(q2 − k)2 + iε
(qα2 + kα)

i

k2 −m2 + iε

= 2e3
∫

d4k

(2π)4
qµ2 + kµ

[(q2 − k)2 + iε][k2 −m2 + iε]

= 2e3
∫

d4k

(2π)4

∫ 1

0

dx
qµ2 + kµ

[(k2 −m2)(1− x) + (q2 − k)2x+ iε]2

(19.19)

Shifting kµ → kµ + qµ2x and dropping terms linear in kµ we get

Mµ = −2ie3
∫

d4k

(2π)4

∫ 1

0

dx
(1 + x)qµ2

[k2 −∆+ iε]2
, (19.20)
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where we use the on-shellness of the scalar and ∆ = m2(1 − x)2. Similarly, the graph
that has the internal photon line emitting from the incoming scalar and ending at the
four-point vertex should contribute as

Mµ = −2ie3
∫

d4k

(2π)4

∫ 1

0

dx
(1 + x)qµ1

[k2 −∆+ iε]2
, (19.21)

Reading off the coefficients of (qµ1 + qµ2 ), we observe that together, these two graphs
contribute to f(p2) as

f(p)2 = 2ie2R

∫
d4k

(2π)4

∫ 1

0

dx
1 + x

[k2 −∆+ iε]2

= −2
e2R

(4π)d/2
µ4−d

∫ 1

0

dx(1 + x)

(
1

∆2− d
2

)
Γ

(
4− d

2

)
= − e2R

8π2

(
3

ε
+

3

2
ln

µ̃2

m2
R

+
7

2

)
.

(19.22)

Then, there is also the

iMµ =
q1

p

p+ k

k

q1 − k
q2

= (−ie)3
∫

d4k

(2π)4
−igνα

(q1 − k)2 + iε
(qν2 + pν + kν)

i

(p+ k)2 −m2 + iε
(pµ + 2kµ)

i

k2 −m2 + iε
(kα + qα1 )

= −2e3
∫

d4k

(2π)4

∫ 1

0

dxdydzδ(x+ y + z − 1)
(pµ + 2kµ)(k2 + 2k · q2 + 2q2 · q1 −m2)

[(k + yp− zq1)
2 −∆+ iε]3

,

(19.23)
where ∆ = −xyp2 + (1− z)2m2. Shifting kµ → kµ − ypµ + zqµ1 , and also remember that

p · q1 = q1 · q2 −m2 = −p · q2 = −p
2

2
, the numerator becomes

Nµ = [pµ(1− 2y) + 2zqµ1 + 2kµ]

×
[
k2 + kν(−2ypν + 2zqν1 + pν + qν1 + qν2 ) + p2(y2 − y − 1 + yz − z) +m2(z2 + z + 1 + z)

]
= [z(qµ1 + qµ2 ) + (x− y)pµ + 2kµ]

×
[
k2 + kν((z + 1)(qν1 + qν2 ) + (x− y)pν)− p2(1 + (1− y)(1− x)) +m2(z + 1)2

]
= 2kµkν [(z + 1)(qν1 + qν2 ) + (x− y)pν ] + k2 [z(qµ1 + qµ2 ) + (x− y)pµ]

+ [z(qµ1 + qµ2 ) + (x− y)pµ]
[
−p2(1 + (1− y)(1− x)) +m2(z + 1)2

]
+ · · ·

= k2
[(

2

d
+ z

2

d
+ z

)
(qµ1 + qµ2 ) +

(
2

d
+ z

)
(x− y)pµ

]
+ [z(qµ1 + qµ2 ) + (x− y)pµ)]

[
m2(1 + z)2 − p2(1 + (1− x)(1− y))

]
+ · · · ,

(19.24)

where · · · contain the terms that have odd number of factors of kµ which shall vanish
after integration. Also notice that the (x− y)pµ is antisymmetric with respect to x↔ y,
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Chapter 19. Renormalized perturbation theory

but the rest of the integral is symmetric so any terms involved with it also vanishes after
integration. The only non-vanishing parts of the numerators are then

Nµ = (qµ1 + qµ2 )

[
k2
(
2

d
+ z

2

d
+ z

)
+ z(m2(1 + z)2 − p2(1 + (1− x)(1− y)))

]
. (19.25)

Reading off the coefficients and taking the limit p2 → 0, we see its contribution to f(p2)
is

f(0) = −2ie2R

∫
d4k

(2π)4

∫ 1

0

dxdydzδ(x+ y + z − 1)
k2
(
2
d
+ z 2

d
+ z
)
+m2

Rz(1 + z)2[
k2 − (1− z)2m2

R + iε
]3 .

(19.26)

The k2 term is UV-divergent, and we can use the dimensional regularization and then
expand in d = 4− ε to regulate that. This part is

−2ie2R

∫
ddk

(2π)d

∫ 1

0

dxdydzδ(x+ y + z − 1)
k2
(
2
d
+ z 2

d
+ z
)[

k2 − (1− z)2m2
R + iε

]3
= −2ie2Rµ

4−d i

(4π)d/2
d

4

∫ 1

0

dxdydzδ(x+ y + z − 1)
2 + 2z + zd

d
((1− z)2m2

R)
d
2
−2Γ

(
4− d

2

)
=

e2R

8π2

∫ 1

0

dxdydzδ(x+ y + z − 1)

[
1 + 3z

ε
+

1 + 3z

2
ln

µ̃2

(1− z)2m2
R

− z

2

]
=

e2R

8π2

∫ 1

0

dz

[
(1 + 3z)(1− z)

ε
+

(1 + 3z)(1− z)

2
ln

µ̃2

(1− z)2m2
R

− (1− z)z

2

]
=

e2R

8π2

(
1

ε
+

1

2
ln

µ̃2

m2
R

+
7

12

)
.

(19.27)

The rest terms are UV finite but IR divergent, so we can set d = 4 in them and add a
photon mass which changes ∆ to ∆ = (1− z)2m2

R+ zm
2
γ when p

2 = 0. Then, we evaluate

−2ie2R

∫
d4k

(2π)4

∫ 1

0

dxdydzδ(x+ y + z − 1)
m2
Rz(1 + z)2[

k2 − (1− z)2m2
R − zm2

γ + iε
]3

= − e2R

16π2

∫ 1

0

dxdydzδ(x+ y + z − 1)
m2
Rz(1 + z)2

(1− z)2m2
R + zm2

γ

=
e2R

8π2

(
ln
m2
γ

m2
R

+
35

12

) (19.28)

Summing over Eq. (19.22), Eq. (19.27), and Eq. (19.28), we get

f(0) =
e2R

8π2

(
−2

ε
− ln

µ̃2

m2
R

+ ln
m2
γ

m2
R

− 7

2
+

7

12
+

35

12

)

=
e2R

8π2

(
−2

ε
− ln

µ̃2

m2
γ

)
.

(19.29)
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Thus,

δ1 = −f(0) = e2R

8π2

(
2

ε
+ ln

µ̃2

m2
γ

)
. (19.30)

Compared this with the Eq. (19.15), we observe that δ1 = δ2 is also true in scalar QED.
We shall prove Z1 = Z2 in Problem ??.
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Chapter 20

Infrared divergences

20.1 ∫
dΠLIPS =

∏
j=3,4,γ

∫
d3pj

(2π)3
1

2Epj
(2π)4δ4(p− p3 − p4 − pγ)

=

(
1

2π

)5 ∫
d3p3
2E3

∫
d3p4
2E4

1

2Eγ
δ4(Q− E3 − E4 − Eγ),

(20.1)

where we integrate over the 3-momenta p⃗γ. Let x1 = 2E4

Q
, x2 = 2E3

Q
, xγ = 2

Eγ

Q
− β, and

x′γ = 2
Eγ

Q
= xγ + β. Then, d3pi = dΩpi

p2i dpi = dΩQ
3

8
x2i dxi. This leads to∫

dΠLIPS =

(
1

2π

)5
Q3

64

∫
dΩp4

x1dx1

∫
dΩp3

x2dx2
1

x′γ
δ4(Q− E3 − E4 − Eγ)

=

(
1

2π

)5
Q2

32

∫
dΩp4

x1dx1

∫
dΩp3

x2dx2
1

x′γ
δ4(2− x2 − x1 − x′γ).

(20.2)

The x′γ has is an implicit function of the 3-momenta of p⃗3 and p⃗4:

x′γ =
2Eγ
Q

=
2

Q

√
(p⃗3 + p⃗4)

2 +m2
γ =

√
x21 + x22 − 2x1x2 cos θ + 4β, (20.3)

where θ is the angle between the p⃗3 and p⃗4. Then,

dx′γ
d cos θ

= −x1x2
x′γ

. (20.4)

Also, notice that the boundary of x′γ is set by θ = 0 and π, but the delta function also forces
that x′γ = 2− x1 − x2. For θ = 0, we thus have

(x′γ)
2 = (x1 − x2)

2 + 4β

(2− (x1 + x2))
2 = (x1 − x2)

2 + 4β

1 + x1x2 − x1 − x2 = β

(1− x1)(1− x2) = β.

(20.5)
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Chapter 20. Infrared divergences

For θ = π, we have

(x′γ)
2 = (x1 + x2)

2 + 4β

(2− (x1 + x2))
2 = (x1 + x2)

2 + 4β

1− x1 − x2 = β

x1 + x2 = 1− β.

(20.6)

∫
dΠLIPS =

Q2

128π3

∫
x1dx1

∫
x2dx2

∫
d(cos θ)

1

x′γ
δ4(2− x2 − x1 − x′γ)

=
Q2

128π3

∫
dx1dx2dx

′
γδ

4(x1 + x2 + x′γ − 2)

=
Q2

128π3

∫ 1−β

0

dx1

∫ 1− β
1−x1

1−x1−β
dx2.

(20.7)

Here, we arrived at the phase space formula in Eq. (20.42) of the book.
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Chapter 21

Renormalizability

21.1

The 1PI diagrams for the superficially divergent amplitudes are

• ⟨AA⟩:

⟨AA⟩ = + + .

(21.1)
All these 1PI diagrams go like

⟨AA⟩ ∼
∫

d8k

(2π)8

(
1

/k

)4(
1

k2

)
∼ Λ2 =⇒ D = 2. (21.2)

• ⟨ψ̄ψ⟩:

⟨ψ̄ψ⟩ = + + .

(21.3)
All these 1PI diagrams go like

⟨ψ̄ψ⟩ ∼
∫

d8k

(2π)8

(
1

/k

)3(
1

k2

)2

∼ Λ1 =⇒ D = 1. (21.4)
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Chapter 21. Renormalizability

• ⟨ψ̄ψA⟩:

⟨ψ̄ψA⟩ = +

+ +

+ +

+ + .

(21.5)

All these 1PI diagrams go like (the last diagram actually has an ABJ anomaly due to the
triangle sub-diagram and thus actually vanishes)

⟨ψ̄ψA⟩ ∼
∫

d8k

(2π)8

(
1

/k

)4(
1

k2

)2

∼ Λ0 =⇒ D = 0. (21.6)

• ⟨AAAA⟩:

⟨AAAA⟩ = + · · · , (21.7)

where the · · · contain all the other variations. They are all characterized by attaching a
photon line onto and closed on a fermion line or onto and connects to another fermion
line. Also, there can be a permutation of the interchanging the final states. All these 1PI
diagrams go like

⟨AAAA⟩ ∼
∫

d8k

(2π)8

(
1

/k

)6(
1

k2

)
∼ Λ0 =⇒ D = 0. (21.8)

These have exhausted the superficially divergent amplitudes in QED at 2-loops. Notice from
the explicit enumeration, the superficial degree of divergence does not change from that of their
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Chapter 21. Renormalizability

corresponding 1-loop result, as can be compared with the Table 21.1 of the book. Thus, the
same four counterterms must be able to remove all of the UV divergences. For higher point
functions, there are no superficially divergent amplitudes and the argument shall just be the
same as the case in 1-loop.
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Chapter 22

Non-renormalizable theories

22.1

The first order perturbation correction in quantum mechanics due to this term is:〈
ψ(0)

∣∣∣ p⃗6

16m5

∣∣∣ψ(0)
〉
=

1

2m2

〈
ψ(0)

∣∣∣ ( p⃗2

2m

)3 ∣∣∣ψ(0)
〉

=
1

2m2

〈
ψ(0)

∣∣∣ (H0 − V )3
∣∣∣ψ(0)

〉
=

1

2m2

[
(E(0)

n )3 + 3(E(0)
n )2⟨V ⟩+ 3(E(0)

n )⟨V 2⟩+ ⟨V 3⟩
]

=
1

2m2

[
(E(0)

n )3 − 3e2(E(0)
n )2

〈
1

r

〉
+ 3e4(E(0)

n )

〈
1

r2

〉
− e8

〈
1

r3

〉]
=

1

2m2

[
(E(0)

n )3 + 6(E(0)
n )3 + 12(E(0)

n )3
n

l + 1
2

+ 8(E(0)
n )3

n3

(l + 1
2
)(l + 1)

]
=

(E(0)
n )3

2m2

[
7 +

12n

l + 1
2

+
8n3

(l + 1
2
)(l + 1)

]
,

(22.1)

where ψ(0) is the unperturbed wavefunction, E(0)
n = e

2

8πa0n
2 is the unperturbed hydrogen energy

level, of which a0 =
4π

e
2
m

is the Bohr radius.

When p2 ≪ m2, the logarithmic term due to quantum loop effect is less suppressed than

the quadratic
(
p
2

m
2

)2
term. Thus, the quantum loop effect is in fact easier to be measured than

the higher order relativistic correction.

22.2

The on-shellness of the spinors means the p
µ
p
ν

M
2 part in the numerator of the propagator dropped

out because of the Dirac equation. When s≪M ,

1

s−M2 = − 1

M2

(
1

1− s

M
2

)
→ − 1

M2

[
1 +

s

M2 +
( s
M

)2
+ · · ·

]
. (22.2)
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Chapter 22. Non-renormalizable theories

Thus, the next order in the expansion of Eq. (22.15) of the book is

iM − ig2
s

M4 v̄2γ
µu1ū3γ

µv4. (22.3)
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Chapter 23

The renormalization group

23.1

(a) At 1-loop of QED, the operator contributes a very similar diagram as Eq. (23.42) of the
book. We have in dimensional regularization,

iM = Ce2Rµ
4−d
∫

ddk

(2π)d
ū(p2)γ

µ(/p2 − /k +m)(/p2 − /k)(/p1 − /k)(/p1 − /k +m)γµu(p1)ū(p3)v(p4)

[(p1 − k)2 −m2][(p2 − k)2 −m2]k2

=M0

(
eRµ

4−d
∫

ddk

(2π)d
d

k2

)
+ finite

∼ iM0

(
e2R

16π2µ
4−d(−1)

Γ(2− d
2
)

(1− d
2
)
d

)
+ finite

= iM0

(
e2R

4π2µ
ε1

ε

)
+ finite

(23.1)

To cancel the divergence, we can renormalize the operator with CRZC(ψ̄ /∂ψ)(ψ̄ /∂ψ) of which
ZC = 1 + δC , such that

δC = − e2R

16π2

4

ε
. (23.2)

Then,

CRZC(ψ̄ /∂ψ)(ψ̄ /∂ψ) = CR
ZC
Z2

(ψ̄(0)/∂ψ(0))(ψ̄(0)/∂ψ(0)) (23.3)

Since the coefficient of the bare operator is independent of µ, we have

0 = µ
d

dµ

(
CRZC
Z2

)
=
CRZC
Z2

[
µ

CR

dCR
dµ

+
1

ZC

∂ZC
∂eR

µ
deR
dµ

− 1

Z2

∂Z2

∂eR
µ
deR
dµ

]
. (23.4)

For leading order term,

γC =
µ

CR

dCR
dµ

=

(
−∂ZC
∂eR

+
∂Z2

∂eR

)
=

(
8eR

16επ2 − 4eR

16επ2

)(
−ε
2
eR

)
= − e2R

8π2 = − α

2π
.

(23.5)
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Chapter 23. The renormalization group

(b) Solving the differential equation gives us

CR(µ) = CR(µ0) exp

[∫ α(µ)

α(µ0)

γC(α)

β(α)
dα

]

= CR(µ0) exp

[∫ α(µ)

α(µ0)

−3

4

dα

α

]

= CR(µ0)

(
α(µ)

α(µ0)

)− 3
4

.

(23.6)

Using Eq. (23.32) of the book, ΛQED = 10286 eV = 10277 GeV, and setting µ0 = 1 TeV, we
can get

CR(µ = 1 GeV) ≈ 1.0082. (23.7)

23.2

The relevant Lagrangian interaction is the Eq. (23.40) of the book:

L4F =
GF√
2
ψ̄µγ

µPLψνµψ̄eγ
µPLψνe + h.c.. (23.8)

The tree-level diagram then is the Eq. (23.39) of the book:

iM0 = i
GF√
2
(ū2γ

µPLu1)(ū3γ
µPLv4), (23.9)

where we use the shorthand ui = u(pi) and the momentum indices follow the Eq. (23.42) of
the book.

The 1-loop diagram is just like the Eq. (23.42) of the book except that a different Feynman
rule applied, which leads to

iM =
GF√
2
e2Rµ

4−d
∫

ddk

(2π)d
[ū2γ

α(/p2 − /k +me)γ
µPLv4][ū3γ

µPL(/p1 − /k +mµ)γ
αu1]

[(p1 − k)2 −m2
µ][(p2 − k)2 −m2

e]k
2 . (23.10)

To extract the counterterm, we can set all the external momenta and masses to zero. Thus,

M =
GF√
2

(
−ie2Rµ4−d

)∫ ddk

(2π)d
[ū2γ

α/kγµPLv4][ū3γ
µPL/kγ

αu1]

k6
+ finite

=
GF√
2

(
−ie2Rµ4−d

)(∫ ddk

(2π)d
kνkβ

k6

)
[ū2γ

αγνγµPLv4]
[
ū3γ

µPLγ
βγαu1

]
+ finite

=
GF√
2

(
−ie2Rµ4−d

)(∫ ddk

(2π)d
gνβ

dk4

)
[ū2γ

αγνγµPLv4]
[
ū3γ

µγβγαPLu1

]
+ finite

=
GF√
2

(
−ie2Rµ4−d

)(∫ ddk

(2π)d
1

dk4

)
[ū2γ

αγνγµPLv4] [ū3γ
µγνγαPLu1] + finite,

(23.11)
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Chapter 23. The renormalization group

where we used the fact that
{
γ5, γµ

}
= 0 such that PL/Rγ

µ = 1∓γ5

2
γµ = γµ 1±γ5

2
= γµPR/L. Now

with the gamma matrices identity:

γµγνγα = gµνγα + gναγµ − gµαγν − iεβµναγβγ5. (23.12)

By using the anti-symmetric property of the Levi-Civita symbol, one immediately observes that

γαγνγµ = γµγνγα + 2iεβµναγβγ5. (23.13)

Using this gamma matrices identity and the Fierz identity Eq. (11.37), the two spinor factors
can be transformed as

[ū2γ
αγνγµPLv4] [ū3γ

µγνγαPLu1] =
[
ū2

(
γµγνγα + 2iεβµναγβγ5

)
PLv4

]
[ū3γ

µγνγαPLu1]

= 16 [ū2γ
µPLu1] [ū3γ

µPLv4] + 2iεβµνα
[
ū2γ

βγ5PLv4

]
[ū3γ

µγνγαPLu1]

= 16 [ū2γ
µPLu1] [ū3γ

µPLv4] + (2iεβµνα)(−iερµνα)
[
ū2γ

βγ5PLv4

] [
ū3γ

ργ5PLu1
]

= 16 [ū2γ
µPLu1] [ū3γ

µPLv4]− 12
[
ū2γ

βPLv4

] [
ū3γ

βPLu1

]
= 16 [ū2γ

µPLu1] [ū3γ
µPLv4]− 12

[
ū2γ

βPLu1

] [
ū3γ

βPLv4

]
= 4 [ū2γ

µPLu1] [ū3γ
µPLv4] ,

(23.14)

where we used the facts that εβµνα is anti-symmetric while the metric tensor gµν is symmetric
in the third line, the contraction of the Levi-Civita symbol εβµναερµνα = −6δβρ as well as

γ5PL = −PL in the fourth line, and another time of Fierz identity Eq. (11.35) in the second to
the last line.

Thus,

M =
GF√
2

(
−4ie2Rµ

4−d
)(∫ ddk

(2π)d
gνβ

dk4

)
[ū2γ

µPLu1] [ū3γ
µPLv4] + finite

= M0

(
−4ie2Rµ

4−d
∫

ddk

(2π)d
gνβ

dk4

)
+ finite

= M0

(
e2R

8π2µ
ε1

ε

)
+ finite.

(23.15)

To remove this divergence, renormalizing G by G = GRZG, and expanding ZG = 1 + δG, we
can the extract the counterterm:

δG = − e2R

16π2

2

ε
. (23.16)

Now, notice that δ2 = − e
2
R

16π
2
2
ε
= δG at one-loop level and thus, Z2 = ZG. Using the fact that

neutrino is neutral, Z2µ = Z2e = Z2:

GR√
2
ZG(ψ̄µγ

µPLψνµ)(ψ̄eγ
µPLψνe) =

GR√
2

ZG
Z2

(ψ̄(0)
µ γµPLψ

(0)
νµ
)(ψ̄(0)

e γµPLψ
(0)
νe
). (23.17)
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Setting up the RGE, we get

0 = µ
d

dµ

(
GRZG
Z2

)
=
GRZG
Z2

[
µ

GR

dGR

dµ
+

1

ZG

∂ZG
∂eR

µ
deR
dµ

− 1

Z2

∂Z2

∂eR
µ
deR
dµ

]
, (23.18)

and thus,

γG ≡ µ

GR

dGR

dµ
=

(
−∂ZG
∂eR

+
∂Z2

∂eR

)
β(eR) = 0 (23.19)

since ZG = Z2. As a result of the vanishing anomalous dimension, GF = G0. In the Eq. (23.38)
of the book, A = 0.

23.3

γm ≡ µ

m2
R

d

dµ
m2
R

d(m2
R)

m2
R

= γm(λR)
dµ

µ
= γm(λR)

1

µ

dµ

dλR
dλR =

γm(λR)

β(λR)
dλR

m2
R(µ) = m2

R(µ0) exp

[∫ λR(µ)

λR(µ0)

γm(λR)

β(λR)
dλR

]
(23.20)

is the general solution.

For small λR, we can retain only the leading order dependence of λR in β(λR) =
3λ

2
R

16π
2 and

γm = λR
16π

2 when ε→ 0 such that γm(λR)
β(λR)

= 1
3λR

.
Integrate out the beta function to extract the leading scale dependence of λR:

β(λR) ≡ µ
d

dµ
λR(µ) =

3λ2R

16π2

dλR

d(λ2R)
=

3

16π2

dµ

µ

1

λR(µ)
− 1

λR(µ0)
=

3

16π2 ln
µ0

µ
(23.21)

The general solution then goes to

ln
m2
R(µ)

m2
R(µ0)

=

∫ λR(µ)

λR(µ0)

1

3λR
dλR

=
1

3
ln

(
λR(µ)

λR(µ0)

)
=

1

3
ln

(
1 +

3λR(µ)

16π2 ln
µ

µ0

)
≈ λR(µ)

16π2 ln
µ

µ0

= γm ln
µ

µ0

,

(23.22)
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where we used λR to be small so that we can expand the ln. Hence, the general solution reduces
to

m2
R(µ) = m2

R(µ0)

(
µ

µ0

)γm
(23.23)

for small λR.

23.4

(a) We can use the four-point function ⟨ϕi(x1)ϕi(x2)ϕj(x3)ϕj(x4)⟩ to renormalize the coupling
constant λ. Without loss of generality, I shall assume i ̸= j. Renormalizing any other
four-point functions shall give the same results. Much like the N = 1 case, at 1-loop order,
we have the diagrams shown in Fig. 23.1. Note that for s-channel, the internal fields ϕm
can either be m = i or m = j or m ̸= i ̸= j.

ϕi

ϕi
ϕm

ϕm
ϕj

ϕj

(a) s-channel

ϕi

ϕi

ϕj

ϕj

ϕi ϕj

(b) t-channel

ϕi

ϕi

ϕj

ϕj

ϕi ϕj

(c) u-channel

Fig. 23.1: Four-point diagrams at 1-loop order of N -fields ϕ4 theory.

Since the counterterm δλ is all we need, we can set zero external momenta, all of these
loops give the same loop integral, but with different multiplicity factors M (expanding in
d = 4− ε dimensions):

=M × (−iλR)2µ2(4−d)
∫

ddk

(2π)d
i

k2
i

k2
=M × µ2(4−d) λ

2
R

8π2

i

ε
. (23.24)

For the multiplicity factors,

• s-channel:

M =
1

2!
×
(
1

4

)2

× [(2× 2× 2× 2)(N − 2) + (2× 4!) + (2× 4!)] =
1

2
(N + 4), (23.25)

where the factor of 1
2!
comes from the perturbation expansion, the factor of

(
1
4

)2
comes

from the normalization of couplings, and the rest come from the number of ways of
Wick contractions. The term with N − 2 in the square bracket counts the number of
diagram with internal fields ϕm differ from neither initial states nor final states. The
other two terms are for the internal fields to be the same as either the initial or final
states.
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• t-channel:

M =
1

2!
×
(
1

4

)2

× (2× 2× 2× 2× 2) = 1. (23.26)

• u-channel: Same as t-channel:
M = 1. (23.27)

Overall, M = 1
2
(N + 4 + 2 + 2) = 1

2
(N + 8). Hence, the loop integral is

= µ2(4−d) (N + 8)λ2R

16π2

i

ε
(23.28)

so that

δλ =
(N + 8)λR

16π2

1

ε
. (23.29)

Since the bare coupling, λ0 = µ4−dλRZλ, is µ independent,

0 = µ
d

dµ
(λ0) = µελRZλ

(
ε+

µ

λR

d

dµ
λR +

µ

Zλ

d

dµ
δλ

)
. (23.30)

Hence, the β-function to order λ2R is

β(λR) ≡ µ
d

dµ
λR(µ) = −ελR +

(N + 8)λ2R

16π2 . (23.31)

Similarly, we can extract δm from the scalar propagator 1-loop correction. The multiplicity
factor is given by

M =
1

4
× [2× (N − 1) + 3× 2] =

1

2
(N + 2), (23.32)

where the term with N − 1 in square bracket counts the number of diagrams with internal
line differ from the initial and final states and the other term counts with the diagrams
with internal line the same as the initial and final states. Hence, the leading graph of ϕi
propagator correction is (expanding in d = 4− ε dimensions)

Σ2(p
2) =

(N + 2)λRm
2
R

16π2

1

ε
+ · · · . (23.33)

Hence, to O(λR),

δm =
(N + 2)λR

16π2

1

ε
. (23.34)

As the bare mass m2 = m2
RZm, and the fact that all fields have the same bare mass in the

Lagrangian, we have the RGE:

0 = µ
d

dµ
(m2) = µ

d

dµ
(m2

RZm) = m2
RZm

(
1

m2
R

µ
d

dµ
m2
R +

1

Zm
µ
d

dµ
δm

)
(23.35)

and hence

γm ≡ µ

m2
R

d

dµ
m2
R = − 1

Zm

∂δm
∂λR

µ
dλR
dµ

=
(N + 2)λR

16π2 +O
(
λ3R
)
. (23.36)
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(b) The Wilson-Fisher fixed point is where the RHS of the RGEs vanish non-trivially:

µ
d

dµ
m2
R =

(N + 2)λR

16π2 m2
R +O

(
λ2R
)
, (23.37)

µ
d

dµ
λ2R = −ελR +

(N + 8)λ2R

16π2 +O
(
λ3R
)
. (23.38)

The location of the Wilson-Fisher fixed point to order ε is

λ∗ =
16π2ε

N + 8
, m∗ = 0 . (23.39)

(c) At this fixed point, the anomalous dimension is

γm =
(N + 2)ε

N + 8
. (23.40)

The critical exponent is

ν =
1

2− γm
=

N + 8

2N + 16− (N + 2)ε
. (23.41)

Doing epsilon expansion in d = 3 =⇒ ε = 1, we have

ν =
N + 8

N + 14
. (23.42)

Note that for N = 1 (3D Ising model), we reproduce

νN=1 =
9

15
= 0.6 . (23.43)

For N = 2 (superfluid transition in 4He), we have

νN=2 =
10

16
= 0.625 , (23.44)

which is close enough to the theoretical estimate using Monte Carlo simulation including
higher order corrections [?]:

ν = 0.6717 . (23.45)
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Implications of unitarity

24.1

(a) There are four poles in the integrand in Eq. (24.29) in the complex k0 plane:

k0 = ±ωk ∓ iε and k0 = p0 ± ωk−p ∓ iε. (24.1)

(b) Closing the contour upward picks up the poles at k0 = −ωk + iε and k0 = p0 − ωk−p + iε.
We thus have

iMloop(p
2) =

(iλ)2

2

∫
d4k

(2π)4
i

(k − p)2 −m2 + iε

i

k2 −m2 + iε

=
(iλ)2

2

∫
d4k

(2π)4

[(
i

2ωk

)
ΠF (k − p)

(
1

k0 − ωk + iε
− 1

k0 + ωk − iε

)
+

(
i

2ωk−p

)
ΠF (k)

(
1

k0 − p0 − ωk−p + iε
− 1

k0 − p0 + ωk−p − iε

)]
=

(iλ)2

2

∫
d4k

(2π)4

[(
i

2ωk

)
ΠF (k − p)(2πi)δ(k0 + ωk)

+

(
i

2ωk−p

)
ΠF (k)(2πi)δ(k0 − p0 + ωk−p)

]
.

(24.2)

The first delta integrates to 0. Thus, only the second term should contribute.

(c) Since the delta function is real, an imaginary part again can only come from i times the
Feynman propagator. Keeping only the second term:

2 ImMloop(p
2) =

λ2

2

∫
d4k

(2π)4

(
1

2ωk−p

)[
(2π)δ(k2 −m2)(2π)δ(k0 − p0 + ωk−p)

]
=
λ2

2

∫
d4k

(2π)4
(2π)δ(k2 −m2)(2π)

[
δ((k − p)2 −m2)− 1

2ωk−p
δ(k0 − p0 − ωk−p)

]
= −λ

2

2

∫
d4k

(2π)4
(−2πi)δ(k2 −m2)(−2πi)δ((k − p)2 −m2).

(24.3)
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We thus recover Eq. (24.33) of the book. Notice that to get the second line, we used the
Eq. (24.32) of the book, and then notice the fact that the second delta function can not
be simultaneously satisfied with δ(k2 −m2).

(d) The loop integral is proportional to

iMloop ∼ (iλ)5
∫

d4k

(2π)4
i

k2 −m2 + iε

i

(k − p1)
2 −m2 + iε

i

(k − p1 + p3)
2 −m2 + iε

× i

(k + p2 − p5)
2 −m2 + iε

i

(k + p2)
2 −m2 + iε

.

(24.4)

Following previous steps, closing the contour on the upper plane, and noticing that the
δ(k0 + ωk) from ΠF (k) and the δ(k0 + p02 + ωk+p2) from ΠF (k + p2) always integrate to 0.
Thus, we can expand the loop integral as

iMloop ∼ (iλ)5
∫

d4k

(2π)4
ΠF (k)ΠF (k + p2)

×
[(

− i

2ωk−p1

)
(2πi)δ(k0 − p01 + ωk−p1)ΠF (k − p1 + p3)ΠF (k + p2 − p5) + · · ·

]
,

(24.5)

where the · · · contain terms that have each of the three Feynman propagator in the bracket
being replaced as a delta function exactly once. Now notice that since this is one-loop, there
is only one unknown loop momentum k. For each terms, we can at most replace one more
Feynman propagator with a delta function without violating the momentum conservation.
This means only one of the four remaining Feynman propagators in each term can be put
into on-shell. Further, since the delta function is real, the imaginary part can only come
from i times the on-shell Feynman propagator. Using the Eq. (24.32) of the book again
reproduce what is expected from the cutting rules.
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Chapter 25

Yang-Mills theory

25.1

From Eq. (25.6) of the book:

LYM = −1

4

∑
a

(F a
µν)

2 = −1

4

∑
a

(∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν)

2, (25.1)

and upon the gauge transformation Eq. (25.67) of the book

Aaµ(x) → Aaµ(x) +
1

g
∂µα

a(x)− fabcαb(x)Acµ(x), (25.2)

we observe that

F a
µν =∂µA

a
ν − ∂νA

a
µ + gfabcAbµA

c
ν

→ F a
µν +

1

g

[
∂µ∂να

a − ∂ν∂µα
a + · · ·

]
+ fabc

[
− ∂µ(α

bAcν) + ∂ν(α
bAcµ) + (∂µα

b)Acν + Abµ(∂να
c) + · · ·

]
+ gfabc

[
−(f bdeαdAeµ)A

c
ν − Abµ(f

cdeαdAeν) + · · ·
]
,

(25.3)

where · · · contain terms that are higher order in α. Notice

• ∂µ∂να
a − ∂ν∂µα

a = 0 simply cancelling out.

•

fabc
[
−∂µ(αbAcν) + ∂ν(α

bAcµ) + (∂µα
b)Acν + Abµ(∂να

c)
]

= fabc
[
−∂µ(αbAcν) + ∂ν(α

bAcµ) + (∂µα
b)Acν

]
+ facbAcµ(∂να

b)

= fabc
[
−∂µ(αbAcν) + ∂ν(α

bAcµ) + (∂µα
b)Acν − Acµ(∂να

b)
]

= fabc
[
−αb(∂µAcν) + αb(∂νA

c
µ)
]

= −fabcαb
(
∂µA

c
ν − ∂νA

c
µ

)
,

where we relabel b↔ c for the last term to get the second line, and then switching b↔ c
to get the third line.
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•

gfabc
[
−(f bdeαdAeµ)A

c
ν − Abµ(f

cdeαdAeν)
]

= fadcαb
(
−fdbeAeµAcν − Adµf

cbeAeν

)
= αb

(
−faecf ebdAdµAcν − fadcf cbeAdµA

e
ν

)
= αbAdµA

e
ν

(
−facef cbd − fadcf cbe

)
= αbAdµA

e
ν

(
−f eacf cbd − fadcf cbe

)
= −αbfabcf cdeAdµAeν ,

where we relabel the dummy variables b↔ d to get the second line, and another relabeling
of d ↔ e for the first term to get the third line, and another relabeling of c ↔ e to get
the fourth line. Lastly, we use the Jacobi identity to arrive the last line.

Collecting the uncancelled terms, we then proved Eq. (25.71) of the book about the transfor-
mation law for the field strength tensor F a

µν :

F a
µν → F a

µν − fabcαbF c
µν . (25.4)

Then, plugging into the Lagrangian,

LYM →= LYM − fabcαb(F c
µνF

a
µν + F a

µνF
c
µν) = LYM, (25.5)

where the terms vanish because fabc is anti-symmetric with respect to a ↔ b but the terms
inside the bracket is symmetric. Thus, the Yang-Mills Lagrangian is gauge invariant.

25.2

• Eq. (25.20):

T aT b =
1

2

{
T a, T b

}
+

1

2

[
T a, T b

]
=

1

2

{
T a, T b

}
+

1

2
ifabcT c.

(25.6)

To get the symmetric part, one can notice that since T aT b is well-defined in the funda-
mental representation, it must be closed. Therefore, it should be an element that can be
represented as a linear combination of the identity matrix I and some generators T c (in
other words, the symmetric part can be separated into a trace part and a traceless part):{

T a, T b
}
= AI+BT c (25.7)

for some group invariant coefficients A and B. The coefficient A can be extracted by
taking the trace for both sides:

1

2
δab = tr

{
[T aT b]

}
= AN, (25.8)

178



Chapter 25. Yang-Mills theory

where we used the normalization condition for the fundamental representation Eq. (25.19)
of the book. Thus, A = 1

2N
δab. To determine B, we can multiply both sides of Eq. (25.7)

by a generator T d from left and then taking the trace:

tr
[
T d
{
T a, T b

}]
=

1

2N
δab tr

[
T d
]
+B tr

[
T dT c

]
= B tr

[
T dT c

]
=
B

2
δdc. (25.9)

Thus,

B = 2 tr
[
T c
{
T a, T b

}]
= 2 tr

[
T cT aT b + T cT bT a

]
= 2 tr

[
T aT bT c + T aT cT b

]
= 2 tr

[
T a
{
T b, T c

}]
≡ dabc,

(25.10)

where we have used the cyclic property of trace. Thus, we arrive at Eq. (25.20) of the
book:

T aT b =
1

2N
δab +

1

2
dabcT c +

1

2
ifabcT c. (25.11)

• Eq. (25.21):

tr
[
T aT bT c

]
=

1

2
tr
[
T a
{
T b, T c

}]
+

1

2
tr
[
T a
[
T b, T c

]]
=

1

4

(
dabc + 2if bcd tr

[
T aT d

])
=

1

4

(
dabc + if bcdδad

)
=

1

4

(
dabc + if bca

)
=

1

4

(
dabc + ifabc

)
.

(25.12)

• Eq. (25.22):

tr
[
T aT bT cT d

]
= tr

[
(T aT b)(T cT d)

]
= tr

[
1

4N2 I
2δabδcd +

1

4
(dabeT e + ifabeT e)(dcdfT f + if cdfT f )

]
=

1

4N
δabδcd +

1

4
(dabe + ifabe)(dcdf + if cdf ) tr

[
T eT f

]
=

1

4N
δabδcd +

1

8
(dabe + ifabe)(dcdf + if cdf )δef

=
1

4N
δabδcd +

1

8
(dabe + ifabe)(dcde + if cde),

(25.13)

where we plugged in Eq. (25.21) and dropped out the traceless terms to get the second
line.
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Quamtum Yang-Mills theory

26.1

There are only the following ghost self-energy diagram as well as the counterterm diagram
contributing the ghost 2-point function at 1-loop:

iMab
self = p

p− k

k

p

= (−g)2fdcbfaef
∫

d4k

(2π)4
(pµ − kµ)pν

[
i
−gµν + (1− ξ)k

µ
k
ν

k
2

k2
δce
]

iδdf

(p− k)2

= g2CAδ
ab

∫
d4k

(2π)4
−(p− k) · p+ (1− ξ) [(p−k)·k](p·k)

k
2

k2(p− k)2

= g2CAδ
ab

∫
d4k

(2π)4

−(p− k) · p+ (1− ξ)
[
(p·k)2

k
2 − p · k

]
k2(p− k)2

= g2CAδ
ab

∫ 1

0

dx

∫
d4k

(2π)4

[
p2
(x− 1)− (1− ξ)x

(k2 −∆)2
+

2(1− x)(1− ξ)[(p · k)2 + (xp)2]

(k2 −∆)3

]
,

(26.1)
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where ∆ = −p2x(1 − x) in both integrals, and we shift k → k + xp to get the last line. Also,
we dropped the terms linear in k and used Eq. (B.2) of the book. Now notice that∫

ddk

(2π)d
(p · k)2

(k2 −∆)3
=

∫
ddk

(2π)d
pµkνgµνpαkβgαβ

(k2 −∆)3

=
1

d

∫
ddk

(2π)d
k2gνβgµνgαβpµpα

(k2 −∆)3

=
1

d

∫
ddk

(2π)d
p2

(k2 −∆)3
.

(26.2)

Thus, in dimensional regularization,

iMab
self = g2CAδ

abµ4−d
∫ 1

0

dx

∫
ddk

(2π)d
p2
[
(x− 1)− (1− ξ)x

(k2 −∆)2
+

2(1− x)(1− ξ)(1
d
k2 + x2)

(k2 −∆)3

]
.

(26.3)
To extract the counterterm, we only need the divergent part:

Mab
self = g2CAδ

ab µ4−d

(4π)d/2

∫ 1

0

dx

(
1

∆

)2− d
2

Γ

(
2− d

2

)
p2
[
(x− 1) +

1

2
(1− 3x)(1− ξ)

]
+ finite

= CAδ
ab

(
g2

16π2

)
p2
(
−1− 1

2
(1− ξ)

)
1

ε
+ finite.

(26.4)

In MS scheme, adding the counterterm contribution

iMab
c.t. = = ip2δabδ3c (26.5)

shall just remove the divergent part. Therefore, one must choose

δ3c =
1

ε

(
g2

16π2

)[
CA +

1

2
(1− ξ)CA

]
, (26.6)

which is exactly Eq. (26.84) of the book as expected.
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Gluon scattering and the
spinor-helicity formalism

27.1

• I believe there is a typo in the question: by definition, the reference momen-
tum rµ must not be aligned with pµ, so the reference momentum can not be
(1, 0, 0, 1). I will try rµ = (1, 0, 0,−1) instead.

By Eq. (27.12) of the book, given that pµ = (E, 0, 0, E) and rµ = (1, 0, 0,−1), we have

pαα̇ =

(
0 0
0 2E

)
, (27.1)

and

rββ̇ =

(
2 0
0 0

)
. (27.2)

From Eq. (27.15) of the book, these are outer product of spinors:

pαα̇ = λαp λ̃
α̇
p , (27.3)

and
rββ̇ = λβr λ̃

β̇
r . (27.4)

We can infer that

λαp =

(
0
ap2

)
, λ̃α̇p =

(
0 bp2

)
, with ap2bp2 = 2E, (27.5)

and

λβr =

(
ar1
0

)
, λ̃β̇r =

(
br1 0

)
, with ar1br1 = 2. (27.6)

For real momenta, where λα = (λ̃α̇)†, we have ap2 = bp2 =
√
2E and ar1 = br1 =

√
2.

Thus,

p⟩ = λαp =

(
0√
2E

)
, and p] = λ̃α̇p =

(
0

√
2E
)
, (27.7)
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and

r⟩ = λβr =

(√
2
0

)
, r] = λ̃β̇r =

(√
2 0

)
. (27.8)

By using Eq. (27.20) of the book with zero phase, we also have

[pr] = ⟨rp⟩ = 2
√
E. (27.9)

Plugging these into Eq. (27.29) of the book, we get

[ϵ−p (r)]
αα̇ =

√
2
p⟩[r
[pr]

=

(
0 0√
2 0

)
, (27.10)

and

[ϵ+p (r)]
αα̇ =

√
2
r⟩[p
⟨rp⟩

=

(
0

√
2

0 0

)
. (27.11)

For each µ, we multiply the µth Pauli matrix with the polarization bispinor and taking
the trace:

ϵµ± =
1

2
σµαα̇ϵ

αα̇
± =

1√
2
(0, 1,±i, 0). (27.12)

• Notice that Eq. (27.29) is only applicable for lightlike polarization, which is not the case.
However, one can observe that ϵµ = 1√

2
(ϵµ+ + ϵµ−). Thus, the reference momentum rµ can

still be taken as rµ = (1, 0, 0,−1).
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Chapter 28

Spontaneous symmetry breaking

28.1

Plugging ϕ(x) =

√
2m

2

λ
+ ϕ̃(x) = v + ϕ̃(x) back into the Lagrangian Eq. (28.10) of the book,

L = (∂µϕ̃
∗)(∂µϕ̃) +m2

[
v2 + ϕ̃∗ϕ̃+ v

(
ϕ̃∗ + ϕ̃

)]
− λ

4

[
v4 +

(
ϕ̃∗ϕ̃
)2

+ v2
(
ϕ̃∗ + ϕ̃

)2
+ 2v2ϕ̃∗ϕ̃+ 2v3

(
ϕ̃∗ + ϕ̃

)
+ 2v

(
ϕ̃∗ϕ̃
)(

ϕ̃∗ + ϕ̃
)]

.
(28.1)

Collecting the bilinear term ϕ̃ and ϕ̃∗ in potential to write out the mass square matrix leads to

M2 =

(
λ
4
v2 −m

2

2
+ λ

4
v2 + λ

4
v2

−m
2

2
+ λ

4
v2 + λ

4
v2 λ

4
v2

)
=
m2

2

(
1 1
1 1

)
, (28.2)

where we have used λv2 = 2m2. Solving for the two eigenvalues m2
1 and m2

2 by noticing that

m2
1m

2
2 = det

(
M2
)
= 0, (28.3)

and

m2
1 +m2

2 = Tr(M) = m2. (28.4)

The two eigenvalues are thus

m2
1 = 0, m2

2 = m2, (28.5)

or

m1 = 0, m2 = m. (28.6)

Indeed, the mass matrix has a zero eigenvalue. Solving for the two eigenvectors ϕ⃗1 and ϕ⃗2:

ϕ⃗1 =
1

2

(
1
1

)
, ϕ⃗2 = − i

2

(
1
−1

)
. (28.7)

Therefore, the linear combination of the complex field ϕ̃ that diagonalize the mass matrix are

just ϕ1 = 1
2

(
ϕ̃+ ϕ̃∗

)
and ϕ2 = − i

2

(
ϕ̃− ϕ̃∗

)
, which are just the real and imaginary degree of
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freedom of ϕ̃, respectively. Writing ϕ̃ = ϕ1+ iϕ2 or ϕ(x) = v+ϕ1(x)+ iϕ2(x) and plugging this
back to Eq. (28.10) of the book, we can get

L = (∂µϕ1)
2 + (∂µϕ2)

2 +m2
[
(v + ϕ1)

2 + ϕ2
2

]
− λ

4

[
(v + ϕ1)

4 + ϕ4
2 + 2(v + ϕ1)

2ϕ2
2

]
= (∂µϕ1)

2 + (∂µϕ2)
2 +m2v2 + 2m2vϕ1 +m2ϕ2

1 +m2ϕ2
2

− λ

4
v4 − λ

4
ϕ4
1 − λvϕ3

1 − λv3ϕ1 −
3

2
v2ϕ2

1 −
λ

4
ϕ4
2 −

λ

2
v2ϕ2

2 −
λ

2
ϕ2
1ϕ

2
2 − λvϕ1ϕ

2
2

= (∂µϕ1)
2 + (∂µϕ2)

2 +
m4

λ
− 2m2ϕ2

1 −
λ

4
ϕ4
1 −

√
2λmϕ3

1 −
λ

4
ϕ4
2 −

λ

2
ϕ2
1ϕ

2
2 −m

√
2λϕ1ϕ

2
2.

(28.8)

To see how this is related to Eq. (28.12), one need to note that this ϕ̃(x) is expanding around
a purely real VEV (unlike Eq. (28.11) of the book). The two descriptions thus should coincide

at where π(x)
Fπ

= 0 such that one can associate

v + ϕ1(x) =

(
v +

1√
2
σ(x)

)
cos

π(x)

Fπ
= v +

1√
2
σ(x), or ϕ1(x) =

1√
2
σ(x), (28.9)

and

ϕ2(x) =

(
v +

1√
2
σ(x)

)
sin

π(x)

Fπ
= 0. (28.10)

The only non-vanishing term involving ϕ2 in Eq. (28.8) is

(∂µϕ2)
2 =

(
v +

1√
2
σ(x)

)2
1

F 2
π

(∂µπ)
2 cos2

π(x)

Fπ
=

(
v +

1√
2
σ(x)

)2
1

F 2
π

(∂µπ)
2. (28.11)

Plugging these back into Eq. (28.8),

L =
1

2
(∂µσ)

2 +

(
v +

1√
2
σ(x)

)2
1

F 2
π

(∂µπ)
2 −

(
−m

4

λ
+m2σ2 +

1

2

√
λmσ3 +

1

16
λσ4

)
, (28.12)

which is exactly Eq. (28.12) of the book.
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Weak interaction

29.1

At tree-level, there is only one s-channel diagram mediating by a Z boson for this process. From
Eq. (29.40)-(29.44) of textbook, the Z couples to the fermion currents JZµ as L = e

sin θw
ZµJ

Z
µ ,

where

JZµ =
1

cos θw
(J3
µ − sin2 θwJ

EM
µ )

=
1

cos θw

[(
T 3 −Q sin2 θw

)
ψ̄Lγ

µψL −Q sin2 θwψ̄Rγ
µψR

]
=

1

cos θw

[(
T 3 −Q sin2 θw

)
ψ̄γµ

(
1− γ5

2

)
ψ −Q sin2 θwψ̄γ

µ

(
1 + γ5

2

)
ψ

]
=

1

cos θw

[
1

2

(
T 3 − 2Q sin2 θw

)
ψ̄γµψ − 1

2
T 3ψ̄γµγ5ψ

]
,

(29.1)

We have separated the current into a vector part and an axial-vector part by inserting the γ5
matrices using PL/R = 1∓γ5

2
.

Since the electron carries an electric charge Q = −1, and the left-handed electron also
carries a weak isospin T 3 = −1

2
while the right-handed is weak isospin neutral, we thus have

JZµ =
1

cos θw

[(
−1

4
+ sin2 θw

)
ēγµe+

1

4
ēγµγ5e

]
. (29.2)
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We then calculate the amplitude under unitary gauge

iM =

e−

e+

Z

=

(
ie

sin θw cos θw

)2(
mW

cos θw

)[(
−1

4
+ sin2 θw

)
ēγµe+

1

4
ēγµγ5e

] −i(gµν − p
µ
p
ν

m
2
Z

)
s−m2

Z

gναϵ∗α

= i

(
e

sin θw cos θw

)2(
mW

cos θw

)[(
−1

4
+ sin2 θw

)
ēγµe+

1

4
ēγµγ5e

]
1

s−m2
Z

ϵ∗µ.

(29.3)

Notice the p
µ
p
ν

m
2
Z

part in the propagator, when coupling with the vector current part does not

contribute since for the on-shell initial electrons, we can use the Dirac equation and pµ = pµ1+p
µ
2

to see

v̄(p1)γ
µu(p2)p

µpν = v̄(p1)(/p1 + /p2)u(p2)p
ν = v̄(p1)(−me +me)u(p2)p

ν = 0. (29.4)

However, for the axial-vector current, this does not vanish because

v̄(p1)γ
µγ5u(p2)p

µpν = v̄(p1)(/p1 + /p2)γ
5u(p2)p

ν

= v̄(p1)/p1γ
5u(p2)p

ν − v̄(p1)γ
5
/p2u(p2)p

ν

= v̄(p1)(−me −me)u(p2)p
ν

= −2mev̄(p1)u(p2)p
ν ,

(29.5)

which is generally nonzero unless me = 0. This is in fact related to chiral anomaly1. Another
way to see the non-vanishing nature of this term is by Goldstone boson equivalence theorem.

The p
µ
p
ν

m
2
Z

part in the propagator comes from the longitudinal polarization of the massive Z boson,

whose contribution is equivalent to a Goldstone gauge boson and the pseudoscalar current is
exactly one would expect from the interaction with a Goldstone boson. However, as for LEP,
s = (206 GeV)2 ≫ m2

e ≈ (0.511 MeV)2, we can safely set me = 0 to do above calculation and
ignore the contribution of this term, which is why we have simplified the propagator in the last

1In fact, this is anomalous at quantum level even for massless fermions, as will be explored in the next
chapter.
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line of Eq. (29.3). The amplitude square is then

1

4

∑
spins

|M|2 = −1

4

(
e

sin θw cos θw

)4(
mW

cos θw

)2(
1

s−m2
Z

)2

×

{(
−1

4
+ sin2 θw

)2

Tr
[
/p1γ

µ
/p2γ

µ
]
+

1

16
Tr
[
/p1γ

µγ5/p2γ
µγ5
]}

=

(
1

4
− sin2 θw + 2 sin4 θw

)(
e

sin θw cos θw

)4(
mZ

s−m2
Z

)2

(p1 · p2)

=

(
1

8
− 1

2
sin2 θw + sin4 θw

)(
e

sin θw cos θw

)4(
mZ

s−m2
Z

)2

s

=
(
2− 8 sin2 θw + 16 sin4 θw

) E2
CMm

6
Z

v4(E2
CM −M2

Z)
2

(29.6)

where we used the trick Eq. (13.112) of the textbook that in any physical matrix element,
one can do the replacement

∑
pols. i ϵ

i∗
µ ϵ

i
ν → −gµν for external polarization to get the first

line. Also notice that there can not be any current and axial-current cross product contri-
bution in the trace terms because any such terms have either Tr[odd # of γ-matrices] = 0 or
Tr
[
γ5 × odd # of γµ

]
= −Tr

[
odd # of γµ × γ5

]
= −Tr

[
γ5 × odd # of γµ

]
= 0. Then, we

used v = 2mW sin θw
e

= 2mZ sin θw cos θw
e

to get the final answer.
In CM frame, we have

pi = |p⃗1| = |p⃗2| =
ECM

2
. (29.7)

To solve for the pf = |p⃗h| = |p⃗Z |, we used the relations

p2f = E2
h −m2

h = E2
Z −m2

Z , (29.8)

and
ECM = Eh + EZ , (29.9)

to get

Eh =
E2

CM −m2
Z +m2

h

2ECM

, (29.10)

or

pf
pi

= 2

√
E2
h −m2

h

E2
CM

= 2

√(
E2

CM −m2
Z +m2

h

)2
4E4

CM

− m2
h

E2
CM

. (29.11)

From Eq. (5.32) of textbook, we have(
dσ

dΩ

)
CM

=
1

64π2E2
CM

pf
pi
|M|2

=

(
2− 8 sin2 θw + 16 sin4 θw

)
m6
Z

64π2v4(E2
CM −M2

Z)
2

pf
pi
.

(29.12)

Integrating over solid angle and plugging the values ECM = 206 GeV, sin2 θw = 0.223, v =
247 GeV, mZ = 91.7816 GeV, and mh = 100 GeV (of course, the actual measured value of
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the mass of Higgs boson is about 125 GeV, but if we take the actual value, the LEP ECM =
206 GeV < mZ +mh is not enough to produce this process resonantly) leads us to the cross
section

σ =

(
2− 8 sin2 θw + 16 sin4 θw

)
m6
Z

16πv4(E2
CM −M2

Z)
2

pf
pi

≈ 1.0192× 10−9 (GeV)−2 ≈ 0.3969 pb. (29.13)

As a sanity check, we used MadGraph5 to generate this process and get a cross section of 0.4263
pb [7], which is not bad.

29.2

(a) Using Eq. (29.40) from textbook, we can get the Z-transmitted diagram under unitary
gauge as

iMZ =

(
ie

sin θw

)2

JZeeµ

−i
(
gµν − p

µ
p
ν

m
2
Z

)
s−m2

Z

JZqqν

= i

(
e

sin θw

)2

JZeeµ

1

s−m2
Z

JZqqµ ,

(29.14)

where JZµ is given by Eq. (29.1), and we again ignore the p
µ
p
ν

m
2
Z

part in the propagator

because the mass of all flavors of quarks except for the top’s are much smaller than mZ

and we will ignore the quark mass (as well as electron mass) from here on, while the top is
too heavy to hadronize before it decays and thus, is not related to this question. For clear
notation purpose, I shall define a ”Z charge” Qz for each particle coupling to the Z boson
as

Qz ≡ T 3 −Q sin2 θw. (29.15)

Notice that the left-handed and right-handed of the same flavor particle do not share the
same weak charge, unlike the electric chargeQ. Then, we can write the Z-boson transmitted
current as

JZµ =
1

2 cos θw

[
(QzR +QzL)ψ̄γ

µψ + (QzR −QzL)ψ̄γ
µγ5ψ

]
, (29.16)

For the γ-transmitted diagram under Feynman gauge, we have

iMγ = ie2Jγeeµ

1

s
Jγqqµ , (29.17)

where Jγµ is given by Eq. (29.44) of textbook:

Jγµ = Qψ̄γµψ. (29.18)

For later convenience, let’s write out the some trace expression and their products:

Tr
[
/piγ

µ
/pjγ

ν
]
= Tr

[
/piγ

µγ5/pjγ
νγ5
]
= 4(pµi p

ν
j − pijg

µν + pνi p
µ
j ), (29.19)
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where pij ≡ pi · pj, and

Tr
[
/piγ

µγ5/pjγ
ν
]
= Tr

[
/piγ

µ
/pjγ

νγ5
]
= −4iεµναβpαi p

β
j . (29.20)

Then,

Tr
[
/p1γ

ν
/p2γ

µ
]
Tr
[
/p3γ

µ
/p4γ

ν
]
= 32(p13p24 + p14p23) = 8(t2 + u2), (29.21)

and

Tr
[
/p1γ

ν
/p2γ

µγ5
]
Tr
[
/p3γ

µ
/p4γ

νγ5
]
= −16(ενµαβpα1p

β
2 )(ε

µνρδpρ3p
δ
4)

= 16(εµναβεµνρδ)pα1p
β
2p

ρ
3p
δ
4

= 32(gαρgβδ − gαδgβρ)pα1p
β
2p

ρ
3p
δ
4

= 32(p13p24 − p14p23)

= 8(t2 − u2).

(29.22)

All other trace products can either be converted to the forms above or vanish. This can
be seen from the fact that Eq. (29.19) is symmetric w.r.t. µ ↔ ν while Eq. (29.20) is
anti-symmetric w.r.t. µ↔ ν so their product must vanish. Then, the spin sum of currents
can be written out as∑
spins

(JZµ )(J
Z
ν )

† =

(
1

2 cos θw

)2
{
(QzR +QzL)

2Tr
[
/piγ

µ
/pjγ

ν
]
+ (QzR −QzL)

2Tr
[
/piγ

µγ5/pjγ
νγ5
]

+ (Q2
zR −Q2

zL) Tr
[
/piγ

µ
/pjγ

νγ5
]
+ (Q2

zR −Q2
zL) Tr

[
/piγ

µγ5/pjγ
ν
]}

=

(
1√

2 cos θw

)2
{
(Q2

zR +Q2
zL) Tr

[
/piγ

µ
/pjγ

ν
]
+ (Q2

zR −Q2
zL) Tr

[
/piγ

µ
/pjγ

νγ5
]}

,

(29.23)∑
spins

(Jγµ)(J
γ
ν )

† = Q2Tr
[
/piγ

µ
/pjγ

ν
]
, (29.24)

and∑
spins

(JZµ )(J
γ
ν )

† =
∑
spins

(Jγµ)(J
Z
ν )

†

=

(
Q

2 cos θw

){
(QzR +QzL) Tr

[
/piγ

µ
/pjγ

ν
]
+ (QzR −QzL) Tr

[
/piγ

µ
/pjγ

νγ5
]}

.

(29.25)

Also, notice that in the massless limit in the CM frame,

t = −2p13 = −2E2(1− cos θ) = −s
2
(1− cos θ), (29.26)

and
u = −2p14 = −2E2(1 + cos θ) = −s

2
(1 + cos θ), (29.27)
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where E =
√
s/2 is the energy of individual particle, and θ is the scattering angle between

the incoming particle and the outgoing particle. Then,

t2 + u2 =
s2

2
(1 + cos2 θ), (29.28)

and

t2 − u2 = −s2 cos θ. (29.29)

Using results above, the Z contribution along is

1

4

∑
spins

|MZ |2 =
3

4

(
e

sin θw

)4(
1

s−m2
Z

)2∑
s

∑
s
′

(JZeeµ )(JZeeν )†(JZqqµ )(JZqqν )†

=
3

2

(
e

sin θw cos θw

)4(
1

s−m2
Z

)2

×

{
(Q2

zR,e +Q2
zL,e)(Q

2
zR,q +Q2

zL,q)(t
2 + u2) + (Q2

zR,e −Q2
zL,e)(Q

2
zR,q −Q2

zL,q)(t
2 − u2)

}

=
3

4

(
e

sin θw cos θw

)4(
s

s−m2
Z

)2

×

{
(Q2

zR,e +Q2
zL,e)(Q

2
zR,q +Q2

zL,q)(1 + cos2 θ)− 2(Q2
zR,e −Q2

zL,e)(Q
2
zR,q −Q2

zL,q) cos θ

}
,

(29.30)

where a factor of 3 comes from the color sum of quarks. Similarly, the γ contribution along
is

1

4

∑
spins

|Mγ|2 =
6Q2

eQ
2
qe

4

s2
(t2 + u2) = 3Q2

eQ
2
qe

4(1 + cos2 θ), (29.31)

and the interference between the two diagrams is

1

4

∑
spins

(
MZM†

γ +MγM†
Z

)
=

3

4

e4

sin2 θw

1

s(s−m2
Z)

2
∑
s

∑
s
′

(JZeeµ )(Jγeeν )†(JZqqµ )(Jγqqν )†

=
3

2

QeQqe
4

sin2 θw cos
2 θw

2

s(s−m2
Z)

×

{
(QzR,e +QzL,e)(QzR,q +QzL,q)(t

2 + u2) + (QzR,e −QzL,e)(QzR,q −QzL,q)(t
2 − u2)

}

=
3

4

QeQqe
4

sin2 θw cos
2 θw

2s2

s(s−m2
Z)

×

{
(QzR,e +QzL,e)(QzR,q +QzL,q)(1 + cos2 θ)− 2(QzR,e −QzL,e)(QzR,q −QzL,q) cos θ

}
(29.32)
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Particle Q QzL QzR

e− −1 −1
2
+ sin2 θw sin2 θw

u, c +2
3

1
2
− 2

3
sin2 θw −2

3
sin2 θw

d, s, b −1
3

−1
2
+ 1

3
sin2 θw

1
3
sin2 θw

Table 29.1: Electric charge and ”Z charge” for the electron and quarks.

electric charge Q and ”Z charge” Qz ≡ T 3 − Q sin2 θw for each fermions relevant to this
problem is listed in Table 29.1.

Before calculating the cross sections, one should notice that since Z boson is heavy and
unstable, one should really really replace the usual Z propagator above by the Breit-Wigner
modified propagator from Eq. (24.50) of textbook (otherwise, the plot of cross section will
also be divergent at s = m2

Z):

iG(s) =
i

s−m2
Z + imZΓZ

(29.33)

Now we know that the differential cross section is given by

(
dσ

d(cos θ)

)
CM

=
1

32πs
|M|2 (29.34)

The cross sections are

σZ(e
+e− → q̄q) =

s

64π

(
e

sin θw cos θw

)4 ∣∣∣∣ 1

s−m2
Z + imZΓZ

∣∣∣∣2
×

{
4(Q2

zR,e +Q2
zL,e)(Q

2
zR,q +Q2

zL,q)− 3(Q2
zR,e −Q2

zL,e)(Q
2
zR,q −Q2

zL,q)

}

=
s

64π

(
e

sin θw cos θw

)4
1

(s−m2
Z)

2 + (mZΓZ)
2

×

{
(Q2

zR,eQ
2
zR,q +Q2

zL,eQ
2
zL,q) + 7(Q2

zR,eQ
2
zL,q +Q2

zL,eQ
2
zR,q)

}
,

(29.35)

σγ(e
+e− → q̄q) =

Q2
qe

4

4πs
, (29.36)
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and 2

σinterfere(e
+e− → q̄q) = − 1

64π

Qqe
4

sin2 θw cos
2 θw

∣∣∣∣ 1

s−m2
Z + imZΓZ

+
1

s−m2
Z − imZΓZ

∣∣∣∣
×

{
4(QzR,e +QzL,e)(QzR,q +QzL,q)− 3(QzR,e −QzL,e)(QzR,q −QzL,q)

}

= − 1

32π

Qqe
4

sin2 θw cos
2 θw

s−m2
Z

(s−m2
Z)

2 + (mZΓZ)
2

×

{
(QzR,eQzR,q +QzL,eQzL,q) + 7(QzR,eQzL,q +QzL,eQzR,q)

}
(29.37)

Then, the total cross section is

σtot(e
+e− → q̄q) =

∑
q

(
σZ + σγ + σinterfere

)
. (29.38)

The sum is over the quark flavors listed in Table 29.1. Since the Z-boson and the photon
does not mix off-diagonal generations, this sum if flavor diagonal.

(b) At NLO, the diagram involves the real emission of a gluon in the final state and a vertex
correction involving the outgoing quarks and a virtual gluon. One can in principle follows
the procedures of Chapter 20.A of textbook, and notice that the correction on a Z diagram
can be seen essentially as a photon diagram, but just with proper replacement of e →

e
sin θw cos θw

, electric charge Q→ QL, QR of which left-handed and right-handed particles just

couple with the Z by a different charge, and the propagator −ig
µν

p
2 → −i g

µν

p
2−m2

Z

. However,

the QCD corrections are the same for left- or right-handed quarks since QCD is non-chiral
and the calculations for the FSR and vertex correction diagrams have nothing to do with
the propagator replacement. Therefore, one just expects the same results of what’s already
calculated in Chapter 26.3 of textbook with proper replacements of coupling strength and
charges mentioned above. The same is also true for the interference terms because the
corrections apply in the same way for the Z diagram and the photon diagram.

Therefore, at NLO, we simply expects

σNLO(e
+e− → q̄q) = σ0

(
1 +

3αs
4π

CF

)
= σ0

(
1 +

αs
π

)
, (29.39)

where σ0(e
+e− → q̄q) is given by Eq. (29.38).

(c) Using the values mZ = 91.7816 GeV, ΓZ = 2.4952 GeV, e = 0.303, and αs/π = 0.035,
sin2 θw = 0.223, as well as charges given in Table 29.1, we plotted the cross sections at
NLO in Fig. 29.1. We also plotted the effect of interference term in Fig. 29.2. From
the figures, the interference can either be ignored when either a) s ≪ mZ where photon
diagram dominates or b) s ∼ mZ where Z diagram dominates.

2Technically, σinterfere(e
+e− → q̄q) is of course not a cross section since it could run to negative value. See

Fig. 29.2. Forgive me to use sloppy notations here.
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Chapter 29. Weak interaction

Fig. 29.1: Cross sections as a function of center-of-mass energy
√
s.

Fig. 29.2: The amount of interference as a function of center-of-mass energy
√
s.
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Chapter 31

Precision tests of the Standard Model

31.1

The relevant Lagrangian of the 4-Fermi theory is given by Eq. (23.40) and Eq. (29.72) of the
textbook:

L4F = −4GF√
2
ψ̄νµγ

µPLψµψ̄eγ
µPLψνe + h.c.. (31.1)

We shall use p1 to denote the 4-momentum of the incoming µ−, p2, p3, p4 to denote the 4-
momentum of the outgoing ν̄e, νµ and e−, respectively. Then, the amplitude is given by

iM = −i4GF√
2

[ū3γ
µPLu1] [ū4γ

µPLv2] , (31.2)

where we used shorthands ui = u(pi) and vi = v(pi). Treating the neutrinos as massless but
still keep the electron as massive, we can get the amplitude square after spin sum as∑
spins

|M|2 = 8G2
F Tr

[
(/p1 +mµ)γ

µPL/p3γ
νPL

]
Tr
[
(/p4 +me)γ

µPL/p2γ
νPL

]
= 8G2

F Tr
[
/p1γ

µ
/p3γ

νPL

]
Tr
[
/p4γ

µ
/p2γ

νPL

]
= 32G2

F

[
(pµ1p

ν
3 + pν1p

µ
3 − gµνp13)− iεµναβpα1p

β
3

] [
(pµ4p

ν
2 + pν4p

µ
2 − gµνp24) + iεµνδσpδ2p

σ
4

]
= 32G2

F [2p14p23 + 2p12p34 + 2(p12p34 − p14p23)]

= 64G2
Fp12p34,

(31.3)

where we used the shorthand pij ≡ pi·pj, and also the facts
{
γµ, γ5

}
= 0 and the anti-symmetric

property of the Levi-Civita tensor.
Next, if we focus on the CM frame of the decayed muon, we shall get p1 = (mµ, 0), p2 =

(E, p⃗2), of which E = |p⃗2|, and p1 = p2 + p3 + p4. Then,

p12 = mµE, (31.4)

(p1 − p2)
2 = (p3 + p4)

2 =⇒ p34 =
m2
µ −m2

e − 2mµE

2
, (31.5)
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such that
|M|2 = 32G2

F (m
2
µ −m2

e − 2mµE)mµE. (31.6)

Notice that if we ignore the electron mass, we get the amplitude square given in problem 5.3
of the textbook.

We can use the 3-body decay phase space integral Eq. (20.42) of the textbook (derived in
Problem (20.1)): ∫

dΠLIPS =
Q2

128π3

∫ 1−β

0

dx1

∫ 1− β
1−x1

1−x1−β
dx2 (31.7)

with proper replacement Q → mµ, x1 = 2 E
mµ

, x2 = 2
Eνµ

mµ
, β → r. The amplitude square,

expressed with these dimensionless variables, becomes

|M|2 = 16G2
Fm

4
µ(1− r − x1)x1. (31.8)

Using the decay rate formula of Eq. (5.24) from the textbook and focusing on the rest frame
of the decayed muon,

Γ =
1

2mµ

∫
|M|2dΠLIPS

= G2
F

m5
µ

16π3

∫ 1−r

0

dx1[(1− r − x1)x1]

∫ 1− r
1−x1

1−x1−r
dx2

= G2
F

m5
µ

16π3

∫ 1−r

0

dx1
x21(1− r − x1)

2

1− x1

= G2
F

m5
µ

192π3

(
1− 8r + 8r3 − r4 − 12r2 ln r

)
.

(31.9)

197



Chapter 32

Quantum chromodynamics and the
parton model

32.1

By definition,

F1(0) = −Q = −
∫
d3xρ(x). (32.1)

Notice

F (q2) =

∫
d3xeiq⃗·x⃗V (x)

= 2π

∫ ∞

0

r2dr

∫ 1

−1

d(cos θ)eiqr cos θV (x)

= 2π

∫ ∞

0

r2dr
1

iqr

(
eiqr − e−iqr

)
V (x)

= 4π

∫ ∞

0

r2dr
1

qr
sin(qr)V (x)

= 4π

∫ ∞

0

r2dr
1

qr

[
qr − 1

6
(qr)3 + · · ·

]
V (x)

= 4π

∫ ∞

0

r2dr

[
1− 1

6
(qr)2 + · · ·

]
V (x),

(32.2)

Now, we can observe that,

dF (q2)

dq2

∣∣∣∣∣
q
2
=0

=
4π

6

∫ ∞

0

r4ρ(x)dr

=
1

6

∫
d3xr2ρ(x)

=
1

6
⟨r2⟩.

(32.3)

From Eq. (32.9) of the textbook,

F1(q
2) ∼ 1(

1− q
2

0.71 GeV
2

)2 , (32.4)
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the proton’s mean charge radius is

⟨r2p⟩ = 6
dF1(q

2)

dq2

∣∣∣∣∣
q
2
=0

=
12

0.71 GeV2 ≈ 16.9 GeV−2 = 16.9× 3.894× 10−32 m2 = 0.658 fm2,

(32.5)
or taking the square root,

rrmsp =
√

⟨r2p⟩ ≈ 0.81 fm. (32.6)

32.2

The parton momentum can be viewed as the sum of the average momentum of each constituent.
Also, since the PDFs are interpreted as classical probabilities, we have

P µ =
∑
j

⟨pµj ⟩ =
∑
j

∫ 1

0

dξpµj fj(ξ) =
∑
j

∫ 1

0

dξP µξjfj(ξ), (32.7)

where we used pµj = ξP µ. Eliminating P µ from both sides, we arrived at∑
j

∫ 1

0

dξ[ξjfj(ξ)] = 1. (32.8)

32.3

As a distribution, the Eq. (32.38) can be defined through∫ 1

0

dz
f(z)

(1− z)1+ε
= −f(1)

ε
+

∫ 1

0

dz
f(z)− f(1)

1− z
+

∞∑
n=1

(−ε)n

n!

∫ 1

0

dz(f(z)− f(1))
lnn(1− z)

1− z
.

(32.9)
Let x = 1 − z, and notice that ε above is used to regulate the IR divergence, and thus ε < 0,
the Eq. (32.118) of the textbook can thus be written as∫ 1

0

dz(1− z)−1−εf(z) =

∫ 1

0

dz(1− z)−1−εf(1) +

∫ 1

0

dz(1− z)−1−ε[f(z)− f(1)]. (32.10)

The first term is evaluated to be∫ 1

0

dz(1− z)−1−εf(1) =

[
1

ε
(1− z)−εf(1)

]1
0

= −f(1)
ε
, (32.11)

where we used the fact that ε < 0. The second term is∫ 1

0

dz(1− z)−1−ε[f(z)− f(1)] =

∫ 1

0

dz
e−ε ln(1−z)

1− z
[f(z)− f(1)]

=

∫ 1

0

dz
1

1− z

∞∑
n=0

(−ε)n lnn(1− z)

n!
[f(z)− f(1)]

=

∫ 1

0

dz
f(z)− f(1)

1− z
+

∞∑
n=1

(−ε)n

n!

∫ 1

0

dz(f(z)− f(1))
lnn(1− z)

1− z
.

(32.12)
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Thus, we derived the expansion of Eq. (32.38) of the textbook:

1

(1− z)1+ε
= −1

ε
δ(1− z) +

1

[1− z]+
− ε

[
ln(1− z)

1− z

]
+

+
∞∑
n=2

(−ε)n

n!

[
lnn(1− z)

1− z

]
+

. (32.13)

200



Part V

Advanced topics

201



Appendices

202



Appendix A

Conventions

A.1

(a) Since the action S must be dimensionless, the Lagrangian density must carry mass dimen-
sion [L] = d. Given that [∂µ] = 1 (cf. Eq. (A.4) of the textbook), we proceed to determine
the dimensions of the fields and couplings.

From the term −1
4
F 2
µν , we have

2× [Fµν ] = [L]
2× (1 + [Aµ]) = d

[Aµ] =
d

2
− 1. (A.1)

From the term −ϕ∗□ϕ, we have

2× [ϕ] + 2 = [L]
2× [ϕ] + 2 = d

[ϕ] =
d

2
− 1. (A.2)

From the term gAµϕ
∗∂µϕ, we have

[g] + [Aµ] + 2× [ϕ] + 1 = [L]

[g] + 3×
(
d

2
− 1

)
+ 1 = d

[g] = 2− d

2
. (A.3)

Finally, from the term λϕ3, we have

[λ] + 3× [ϕ] = [L]

[λ] + 3×
(
d

2
− 1

)
= d

[λ] = 3− d

2
. (A.4)
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(b) To ensure that the electromagnetic coupling g is renormalizable, we require from Eq. (A.3):

0 = [g] = 2− d

2
=⇒ d = 4. (A.5)

Similarly, for the ϕ3 scalar self-interaction coupling λ to be renormalizable, Eq. (A.4) yields:

0 = [λ] = 3− d

2
=⇒ d = 6. (A.6)
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Appendix B

Regularization

B.1

Starting with ∫
d4k

(2π)4
1

(k2 −∆+ iϵ)n
, (B.1)

where ∆ < 0. Now the integral still have poles at k0 =
√
k⃗2 +∆− iϵ and k0 = −

√
k⃗2 +∆+ iϵ.

If |⃗k2| > |∆|, the poles will then just on the same quadrants of the k0 complex plane as the

case if ∆ > 0. Thus, let’s assume |⃗k2| < |∆|.∫
d4k

(2π)4
1

(k2 −∆+ iϵ)n
=

∫
d4k

(2π)4
1

(k20 + (−k⃗2 −∆+ iϵ))n
. (B.2)

The poles are now at k0 = i(
√

−k⃗2 −∆+iϵ) = −ϵ+i
√
−k⃗2 −∆ and k0 = i(−

√
−k⃗2 −∆−iϵ) =

ϵ− i
√

−k⃗2 −∆. Since ϵ > 0 and
√

−k⃗2 −∆ > 0, the poles are still in the top-left and bottom-
right quadrants of the k0 complex plane, for which the integral over the figure-eight contour
still vanishes and the conclusion that the integral over the real and the imaginary axis are equal
and opposite still holds.
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